1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2009-12 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
/**@file
* Test the Force::LinearBushing force element.
*/
#include "SimTKsimbody.h"
#include "SimTKcommon/Testing.h"
#include <cstdio>
#include <exception>
#include <iostream>
using std::cout; using std::endl;
//#define VISUALIZE
#ifdef VISUALIZE
#define WAIT_FOR_INPUT(str) \
do {printf(str); getchar();} while(false)
#define REPORT(state) \
do {viz.report(state);viz.zoomCameraToShowAllGeometry();} while (false)
#else
#define WAIT_FOR_INPUT(str)
#define REPORT(state)
#endif
using namespace SimTK;
void testParameterSetting() {
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
// This is the frame on body1.
const Transform X_B1F(Test::randRotation(), Test::randVec3());
// This is the frame on body 2.
const Transform X_B2M(Test::randRotation(), Test::randVec3());
// Material properties.
const Vec6 k = 10*Vec6(1,2,1,1,5,1);
const Vec6 c = 1.3*Vec6(1,.1,1,.11,1,11);
const Real Mass = 1.234;
Body::Rigid aBody(MassProperties(Mass, Vec3(.1,.2,.3),
Mass*Inertia(1,1.1,1.2,0.01,0.02,0.03)));
MobilizedBody::Free body1(matter.Ground(), Transform(),
aBody, Transform());
MobilizedBody::Free body2(matter.Ground(), Transform(),
aBody, Transform());
Force::LinearBushing bushing
(forces, body1, Vec3(1,2,3),
body2, Vec3(-2,-3,-4),
Vec6(5), Vec6(7));
SimTK_TEST_EQ(bushing.getDefaultFrameOnBody1(),Transform(Vec3(1,2,3)));
SimTK_TEST_EQ(bushing.getDefaultFrameOnBody2(),Transform(Vec3(-2,-3,-4)));
SimTK_TEST_EQ(bushing.getDefaultStiffness(),Vec6(5,5,5,5,5,5));
SimTK_TEST_EQ(bushing.getDefaultDamping(),Vec6(7,7,7,7,7,7));
bushing.setDefaultFrameOnBody1(Vec3(-1,-2,-3))
.setDefaultFrameOnBody2(Vec3(2,3,4))
.setDefaultStiffness(Vec6(9))
.setDefaultDamping(Vec6(11));
SimTK_TEST_EQ(bushing.getDefaultFrameOnBody1(),Transform(Vec3(-1,-2,-3)));
SimTK_TEST_EQ(bushing.getDefaultFrameOnBody2(),Transform(Vec3(2,3,4)));
SimTK_TEST_EQ(bushing.getDefaultStiffness(),Vec6(9));
SimTK_TEST_EQ(bushing.getDefaultDamping(),Vec6(11));
system.realizeTopology();
State state = system.getDefaultState();
system.realizeModel(state);
// See if defaults transfer to default state properly.
SimTK_TEST_EQ(bushing.getFrameOnBody1(state),Transform(Vec3(-1,-2,-3)));
SimTK_TEST_EQ(bushing.getFrameOnBody2(state),Transform(Vec3(2,3,4)));
SimTK_TEST_EQ(bushing.getStiffness(state),Vec6(9));
SimTK_TEST_EQ(bushing.getDamping(state),Vec6(11));
bushing.setFrameOnBody1(state, X_B1F)
.setFrameOnBody2(state, X_B2M)
.setStiffness(state, k)
.setDamping(state, c);
SimTK_TEST_EQ(bushing.getFrameOnBody1(state),X_B1F);
SimTK_TEST_EQ(bushing.getFrameOnBody2(state),X_B2M);
SimTK_TEST_EQ(bushing.getStiffness(state),k);
SimTK_TEST_EQ(bushing.getDamping(state),c);
}
// Here we're going to build a chain like this:
//
// Ground --> body1 ==> body2
//
// where body1 is Free, and body2 is connected to body1 by
// a series of mobilizers designed to have the same kinematics
// as a LinearBushing element connected between them.
//
// We'll verify that the LinearBushing calculates kinematics
// that exactly matches the composite joint. Then we'll run
// for a while and see that energy+dissipation is conserved.
void testKinematicsAndEnergyConservation() {
// Build system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
// This is the frame on body1.
const Transform X_B1F(Test::randRotation(), Test::randVec3());
// This is the frame on body 2.
const Transform X_B2M(Test::randRotation(), Test::randVec3());
// Material properties.
const Vec6 k = 10*Vec6(1,1,1,1,1,1);
const Vec6 c = 1*Vec6(1,1,1,1,1,1);
// Use ugly mass properties to make sure we test all the terms.
const Real Mass = 1.234;
const Vec3 HalfShape = Vec3(1,.5,.25)/2;
Body::Rigid aBody(MassProperties(Mass, Vec3(.1,.2,.3),
Mass*Inertia(1,1.1,1.2,0.01,0.02,0.03)));
aBody.addDecoration(Transform(), DecorativeEllipsoid(HalfShape)
.setOpacity(0.25)
.setColor(Blue));
aBody.addDecoration(X_B1F,
DecorativeFrame(0.5).setColor(Red));
aBody.addDecoration(X_B2M,
DecorativeFrame(0.5).setColor(Green));
// Ground attachement frame.
const Transform X_GA(
Test::randRotation(), Test::randVec3());
MobilizedBody::Free body1(matter.Ground(), X_GA,
aBody, X_B2M);
// This is to keep the system from flying away.
Force::TwoPointLinearSpring(forces,matter.Ground(),Vec3(0),body1,Vec3(0),
10,0);
Body::Rigid massless(MassProperties(0, Vec3(0), Inertia(0)));
const Rotation ZtoX(Pi/2, YAxis);
const Rotation ZtoY(-Pi/2, XAxis);
MobilizedBody::Cartesian dummy1(body1, X_B1F,
massless, Transform());
MobilizedBody::Pin dummy2(dummy1, ZtoX,
massless, ZtoX);
MobilizedBody::Pin dummy3(dummy2, ZtoY,
massless, ZtoY);
MobilizedBody::Pin body2 (dummy3, Transform(), // about Z
aBody, X_B2M);
// Set the actual parameters in the State below.
Force::LinearBushing bushing
(forces, body1, body2, Vec6(0), Vec6(0));
#ifdef VISUALIZE
Visualizer viz(system);
viz.setBackgroundType(Visualizer::SolidColor);
system.addEventReporter(new Visualizer::Reporter(viz, 0.01));
#endif
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
bushing.setFrameOnBody1(state, X_B1F)
.setFrameOnBody2(state, X_B2M)
.setStiffness(state, k)
.setDamping(state, c);
REPORT(state);
WAIT_FOR_INPUT("\nDefault state -- hit ENTER\n");
state.updQ() = Test::randVector(state.getNQ());
state.updU() = Test::randVector(state.getNU());
state.updU()(3,3) = 0; // kill translational velocity
const Real Accuracy = 1e-6;
RungeKuttaMersonIntegrator integ(system);
integ.setAccuracy(Accuracy);
TimeStepper ts(system, integ);
ts.initialize(state);
State istate = integ.getState();
system.realize(istate, Stage::Velocity);
Vector xyz = istate.getQ()(7,3); Vector ang = istate.getQ()(10,3);
Vector xyzd = istate.getQDot()(7,3); Vector angd = istate.getQDot()(10,3);
Vec6 mq = Vec6(ang[0],ang[1],ang[2],xyz[0],xyz[1],xyz[2]);
Vec6 mqd = Vec6(angd[0],angd[1],angd[2],xyzd[0],xyzd[1],xyzd[2]);
SimTK_TEST_EQ(bushing.getQ(istate), mq);
SimTK_TEST_EQ(bushing.getQDot(istate), mqd);
const Real initialEnergy = system.calcEnergy(istate);
SimTK_TEST( bushing.getDissipatedEnergy(istate) == 0 );
REPORT(integ.getState());
cout << "t=" << integ.getTime()
<< "\nE=" << initialEnergy
<< "\nmobilizer q=" << mq
<< "\nbushing q=" << bushing.getQ(istate)
<< "\nmobilizer qd=" << mqd
<< "\nbushing qd=" << bushing.getQDot(istate)
<< endl;
WAIT_FOR_INPUT("After initialize -- hit ENTER\n");
// Simulate it.
ts.stepTo(5.0);
istate = integ.getState();
system.realize(istate, Stage::Velocity);
xyz = istate.getQ()(7,3); ang = istate.getQ()(10,3);
xyzd = istate.getQDot()(7,3); angd = istate.getQDot()(10,3);
mq = Vec6(ang[0],ang[1],ang[2],xyz[0],xyz[1],xyz[2]);
mqd = Vec6(angd[0],angd[1],angd[2],xyzd[0],xyzd[1],xyzd[2]);
SimTK_TEST_EQ(bushing.getQ(istate), mq);
SimTK_TEST_EQ(bushing.getQDot(istate), mqd);
// This should account for all the energy.
const Real finalEnergy = system.calcEnergy(istate)
+ bushing.getDissipatedEnergy(istate);
SimTK_TEST_EQ_TOL(initialEnergy, finalEnergy, 10*Accuracy);
// Let's find everything and see if the bushing agrees.
const Transform& X_GB1 = body1.getBodyTransform(istate);
const Transform& X_GB2 = body2.getBodyTransform(istate);
const Transform X_GF = X_GB1*X_B1F;
const Transform X_GM = X_GB2*X_B2M;
SimTK_TEST_EQ(X_GF, bushing.getX_GF(istate));
SimTK_TEST_EQ(X_GM, bushing.getX_GM(istate));
SimTK_TEST_EQ(~X_GF*X_GM, bushing.getX_FM(istate));
// Calculate velocities and ask the bushing for same.
const SpatialVec& V_GB1 = body1.getBodyVelocity(istate);
const SpatialVec& V_GB2 = body2.getBodyVelocity(istate);
const SpatialVec
V_GF(V_GB1[0], body1.findStationVelocityInGround(istate,X_B1F.p()));
const SpatialVec
V_GM(V_GB2[0], body2.findStationVelocityInGround(istate,X_B2M.p()));
SimTK_TEST_EQ(V_GF, bushing.getV_GF(istate));
SimTK_TEST_EQ(V_GM, bushing.getV_GM(istate));
const SpatialVec
V_FM(~X_B1F.R()*body2.findBodyAngularVelocityInAnotherBody(istate,body1),
~X_B1F.R()*body2.findStationVelocityInAnotherBody(istate,X_B2M.p(),body1));
SimTK_TEST_EQ(V_FM, bushing.getV_FM(istate));
cout << "t=" << integ.getTime()
<< "\nE=" << system.calcEnergy(istate)
<< "\nE-XW=" << finalEnergy << " final-init=" << finalEnergy-initialEnergy
<< "\nmobilizer q=" << mq
<< "\nbushing q=" << bushing.getQ(istate)
<< "\nmobilizer qd=" << mqd
<< "\nbushing qd=" << bushing.getQDot(istate)
<< endl;
WAIT_FOR_INPUT("After simulation -- hit ENTER\n");
}
// Here we're going to build a chain like this:
//
// Ground --> body1 ==> body2
//
// where body1 is Free, and body2 is connected to body1 by
// a Bushing mobilizer, which should have the same kinematics
// as a LinearBushing element connected between them.
//
// We'll verify that the LinearBushing calculates kinematics
// that exactly matches the Bushing mobilizer. Then we'll run
// for a while and see that energy+dissipation is conserved.
void testKinematicsAndEnergyConservationUsingBushingMobilizer() {
// Build system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
// This is the frame on body1.
const Transform X_B1F(Test::randRotation(), Test::randVec3());
// This is the frame on body 2.
const Transform X_B2M(Test::randRotation(), Test::randVec3());
// Material properties.
const Vec6 k = 10*Vec6(1,1,1,1,1,1);
const Vec6 c = 1*Vec6(1,1,1,1,1,1);
// Use ugly mass properties to make sure we test all the terms.
const Real Mass = 1.234;
const Vec3 HalfShape = Vec3(1,.5,.25)/2;
Body::Rigid aBody(MassProperties(Mass, Vec3(.1,.2,.3),
Mass*Inertia(1,1.1,1.2,0.01,0.02,0.03)));
aBody.addDecoration(Transform(), DecorativeEllipsoid(HalfShape)
.setOpacity(0.25)
.setColor(Blue));
aBody.addDecoration(X_B1F,
DecorativeFrame(0.5).setColor(Red));
aBody.addDecoration(X_B2M,
DecorativeFrame(0.5).setColor(Green));
// Ground attachement frame.
const Transform X_GA(
Test::randRotation(), Test::randVec3());
MobilizedBody::Free body1(matter.Ground(), X_GA,
aBody, X_B2M);
// This is to keep the system from flying away.
Force::TwoPointLinearSpring(forces,matter.Ground(),Vec3(0),body1,Vec3(0),
10,0);
MobilizedBody::Bushing body2(body1, X_B1F,
aBody, X_B2M);
// Set the actual parameters in the State below.
Force::LinearBushing bushing
(forces, body1, body2, Vec6(0), Vec6(0));
#ifdef VISUALIZE
Visualizer viz(system);
viz.setBackgroundType(Visualizer::SolidColor);
system.addEventReporter(new Visualizer::Reporter(viz, 0.01));
#endif
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
bushing.setFrameOnBody1(state, X_B1F)
.setFrameOnBody2(state, X_B2M)
.setStiffness(state, k)
.setDamping(state, c);
REPORT(state);
WAIT_FOR_INPUT("\nDefault state -- hit ENTER\n");
state.updQ() = Test::randVector(state.getNQ());
state.updU() = Test::randVector(state.getNU());
state.updU()(3,3) = 0; // kill translational velocity
const Real Accuracy = 1e-6;
RungeKuttaMersonIntegrator integ(system);
integ.setAccuracy(Accuracy);
TimeStepper ts(system, integ);
ts.initialize(state);
State istate = integ.getState();
system.realize(istate, Stage::Velocity);
// Get the q's and qdot's from the Bushing mobilizer.
Vec6 mq = body2.getQ(istate);
Vec6 mqd = body2.getQDot(istate);
SimTK_TEST_EQ(bushing.getQ(istate), mq);
SimTK_TEST_EQ(bushing.getQDot(istate), mqd);
const Real initialEnergy = system.calcEnergy(istate);
SimTK_TEST( bushing.getDissipatedEnergy(istate) == 0 );
REPORT(integ.getState());
cout << "t=" << integ.getTime()
<< "\nE=" << initialEnergy
<< "\nmobilizer q=" << mq
<< "\nbushing q=" << bushing.getQ(istate)
<< "\nmobilizer qd=" << mqd
<< "\nbushing qd=" << bushing.getQDot(istate)
<< endl;
WAIT_FOR_INPUT("After initialize -- hit ENTER\n");
// Simulate it.
ts.stepTo(5.0);
istate = integ.getState();
system.realize(istate, Stage::Velocity);
mq = body2.getQ(istate);
mqd = body2.getQDot(istate);
SimTK_TEST_EQ(bushing.getQ(istate), mq);
SimTK_TEST_EQ(bushing.getQDot(istate), mqd);
// This should account for all the energy.
const Real finalEnergy = system.calcEnergy(istate)
+ bushing.getDissipatedEnergy(istate);
SimTK_TEST_EQ_TOL(initialEnergy, finalEnergy, 10*Accuracy);
// Let's find everything and see if the bushing agrees.
const Transform& X_GB1 = body1.getBodyTransform(istate);
const Transform& X_GB2 = body2.getBodyTransform(istate);
const Transform X_GF = X_GB1*X_B1F;
const Transform X_GM = X_GB2*X_B2M;
SimTK_TEST_EQ(X_GF, bushing.getX_GF(istate));
SimTK_TEST_EQ(X_GM, bushing.getX_GM(istate));
SimTK_TEST_EQ(~X_GF*X_GM, bushing.getX_FM(istate));
// Calculate velocities and ask the bushing for same.
const SpatialVec& V_GB1 = body1.getBodyVelocity(istate);
const SpatialVec& V_GB2 = body2.getBodyVelocity(istate);
const SpatialVec
V_GF(V_GB1[0], body1.findStationVelocityInGround(istate,X_B1F.p()));
const SpatialVec
V_GM(V_GB2[0], body2.findStationVelocityInGround(istate,X_B2M.p()));
SimTK_TEST_EQ(V_GF, bushing.getV_GF(istate));
SimTK_TEST_EQ(V_GM, bushing.getV_GM(istate));
const SpatialVec
V_FM(~X_B1F.R()*body2.findBodyAngularVelocityInAnotherBody(istate,body1),
~X_B1F.R()*body2.findStationVelocityInAnotherBody(istate,X_B2M.p(),body1));
SimTK_TEST_EQ(V_FM, bushing.getV_FM(istate));
cout << "t=" << integ.getTime()
<< "\nE=" << system.calcEnergy(istate)
<< "\nE-XW=" << finalEnergy << " final-init=" << finalEnergy-initialEnergy
<< "\nmobilizer q=" << mq
<< "\nbushing q=" << bushing.getQ(istate)
<< "\nmobilizer qd=" << mqd
<< "\nbushing qd=" << bushing.getQDot(istate)
<< endl;
WAIT_FOR_INPUT("After simulation -- hit ENTER\n");
}
// Here we're going to build a system containing two parallel multibody
// trees, each consisting of a single body connected to ground. For the
// first system the body is on a Free mobilizer and a LinearBushing
// connects the body and Ground. In the second, a series of mobilizers
// exactly mimics the kinematics, and a set of mobility springs and
// dampers are used to mimic the forces that should be produced by the
// bushing. We'll then evaluate in some arbitrary configuration and
// make sure the mobilizer reaction forces match the corresponding
// LinearBushing force.
void testForces() {
// Create the system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::UniformGravity gravity(forces, matter, 0*Vec3(0, -9.8, 0));
const Real Mass = 1;
const Vec3 HalfShape = Vec3(1,.5,.25)/2;
const Transform BodyAttach(Rotation(), Vec3(HalfShape[0],0,0));
Body::Rigid brickBody(MassProperties(Mass, Vec3(.1,.2,.3),
Mass*Inertia(1,1.1,1.2,0.01,0.02,0.03)));
//Body::Rigid brickBody(MassProperties(Mass, Vec3(0),
// Mass*UnitInertia::ellipsoid(HalfShape)));
brickBody.addDecoration(Transform(), DecorativeEllipsoid(HalfShape)
.setOpacity(0.25)
.setColor(Blue));
brickBody.addDecoration(BodyAttach,
DecorativeFrame(0.5).setColor(Red));
MobilizedBody::Free brick1(matter.Ground(), Transform(),
brickBody, BodyAttach);
Body::Rigid massless(MassProperties(0, Vec3(0), Inertia(0)));
const Rotation ZtoX(Pi/2, YAxis);
const Rotation ZtoY(-Pi/2, XAxis);
// This sequence is used to match the kinematics of a "forward" direction
// bushing where Ground is body 1.
//MobilizedBody::Cartesian dummy1(matter.Ground(), Vec3(1,1,1)+Vec3(2,0,0),
// massless, Transform());
//MobilizedBody::Pin dummy2(dummy1, ZtoX,
// massless, ZtoX);
//MobilizedBody::Pin dummy3(dummy2, ZtoY,
// massless, ZtoY);
//MobilizedBody::Pin brick2(dummy3, Transform(), // about Z
// brickBody, BodyAttach);
// This sequence is used to match the kinematics of a "reverse" direction
// bushing where Ground is body 2 (this is trickier).
MobilizedBody::Pin dummy1(matter.Ground(), Vec3(1,1,1)+Vec3(2,0,0),
massless, Transform(), MobilizedBody::Reverse);
MobilizedBody::Pin dummy2(dummy1, ZtoY,
massless, ZtoY, MobilizedBody::Reverse);
MobilizedBody::Pin dummy3(dummy2, ZtoX,
massless, ZtoX, MobilizedBody::Reverse);
MobilizedBody::Cartesian brick2(dummy3, Transform(),
brickBody, BodyAttach, MobilizedBody::Reverse);
const Vec6 k = Test::randVec<6>().abs(); // must be > 0
const Vec6 c = Test::randVec<6>().abs(); // "
Transform GroundAttach(Rotation(), Vec3(1,1,1));
matter.Ground().updBody().addDecoration(GroundAttach,
DecorativeFrame(0.5).setColor(Green));
const Vec6 k1 = k;
const Vec6 c1 = c;
// This is the Forward version
//Force::LinearBushing bushing
// (forces, matter.Ground(), GroundAttach,
// brick1, BodyAttach, k1, c1);
// This is the reverse version -- the moving body is the first body
// for the bushing; Ground is second. This is a harder test because
// the F frame is moving.
Force::LinearBushing bushing
(forces, brick1, BodyAttach,
matter.Ground(), GroundAttach,
k1, c1);
Force::LinearBushing bushing2
(forces, brick1, brick2, k, c);
Transform GroundAttach2(Rotation(), Vec3(1,1,1) + Vec3(2,0,0));
matter.Ground().updBody().addDecoration(GroundAttach2,
DecorativeFrame(0.5).setColor(Green));
const Vec6 k2 = k;
const Vec6 c2 = c;
// This is what you would do for a forward-direction set of
// mobilizers to match the forward bushing.
//Force::MobilityLinearSpring kqx(forces, dummy2, 0, k2[0], 0);
//Force::MobilityLinearDamper cqx(forces, dummy2, 0, c2[0]);
//Force::MobilityLinearSpring kqy(forces, dummy3, 0, k2[1], 0);
//Force::MobilityLinearDamper cqy(forces, dummy3, 0, c2[1]);
//Force::MobilityLinearSpring kqz(forces, brick2, 0, k2[2], 0);
//Force::MobilityLinearDamper cqz(forces, brick2, 0, c2[2]);
//Force::MobilityLinearSpring kpx(forces, dummy1, 0, k2[3], 0);
//Force::MobilityLinearDamper cpx(forces, dummy1, 0, c2[3]);
//Force::MobilityLinearSpring kpy(forces, dummy1, 1, k2[4], 0);
//Force::MobilityLinearDamper cpy(forces, dummy1, 1, c2[4]);
//Force::MobilityLinearSpring kpz(forces, dummy1, 2, k2[5], 0);
//Force::MobilityLinearDamper cpz(forces, dummy1, 2, c2[5]);
// This is the set of force elements that mimics the bushing hooked
// up in the reverse direction.
Force::MobilityLinearSpring kqx(forces, dummy3, 0, k2[0], 0);
Force::MobilityLinearDamper cqx(forces, dummy3, 0, c2[0]);
Force::MobilityLinearSpring kqy(forces, dummy2, 0, k2[1], 0);
Force::MobilityLinearDamper cqy(forces, dummy2, 0, c2[1]);
Force::MobilityLinearSpring kqz(forces, dummy1, 0, k2[2], 0);
Force::MobilityLinearDamper cqz(forces, dummy1, 0, c2[2]);
Force::MobilityLinearSpring kpx(forces, brick2, 0, k2[3], 0);
Force::MobilityLinearDamper cpx(forces, brick2, 0, c2[3]);
Force::MobilityLinearSpring kpy(forces, brick2, 1, k2[4], 0);
Force::MobilityLinearDamper cpy(forces, brick2, 1, c2[4]);
Force::MobilityLinearSpring kpz(forces, brick2, 2, k2[5], 0);
Force::MobilityLinearDamper cpz(forces, brick2, 2, c2[5]);
#ifdef VISUALIZE
Visualizer viz(system);
viz.setBackgroundType(Visualizer::SolidColor);
system.addEventReporter(new Visualizer::Reporter(viz, 0.01));
#endif
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
REPORT(state);
Rotation RR = Test::randRotation();
brick1.setQToFitTransform(state, RR);
Vec3 qRRinv;
qRRinv = Rotation(~RR).convertRotationToBodyFixedXYZ();
brick2.setQToFitTransform(state, ~RR*Vec3(-1,-1,-1));
dummy3.setOneQ(state, 0, qRRinv[0]);
dummy2.setOneQ(state, 0, qRRinv[1]);
dummy1.setOneQ(state, 0, qRRinv[2]);
REPORT(state);
WAIT_FOR_INPUT("testForces() trial pose -- hit ENTER\n");
system.realize(state,Stage::Acceleration);
//cout << "\nf=" << bushing.getF(state) << endl;
//cout << "F_GM=" << bushing.getF_GM(state) << endl;
//cout << "F_GF=" << bushing.getF_GF(state) << endl;
Vector_<SpatialVec> reactions;
matter.calcMobilizerReactionForces(state, reactions);
//cout << "Reaction force on brick2="
// << reactions[brick2.getMobilizedBodyIndex()] << endl;
SimTK_TEST_EQ(bushing.getF_GF(state),
reactions[brick2.getMobilizedBodyIndex()]);
}
// This test is identical to testForces() except we use a reverse Bushing
// mobilizer rather than a sequence of Translation and Pins.
//
// Here we're going to build a system containing two parallel multibody
// trees, each consisting of a single body connected to ground. For the
// first system the body is on a Free mobilizer and a LinearBushing
// connects the body and Ground, although with Ground serving as "body2" for
// the bushing (i.e., the M frame is on Ground). In the second, a reversed
// Bushing mobilizer exactly mimics the kinematics, and a set of mobility
// springs and dampers are used to mimic the forces that should be produced by
// the bushing. We'll then evaluate in some arbitrary configuration and
// make sure the mobilizer reaction forces match the corresponding
// LinearBushing force.
void testForcesUsingReverseBushingMobilizer() {
// Create the system.
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::UniformGravity gravity(forces, matter, 0*Vec3(0, -9.8, 0));
matter.Ground().addBodyDecoration(Transform(),
DecorativeFrame(.25).setColor(Purple));
const Real Mass = 1;
const Vec3 HalfShape = Vec3(1,.5,.25)/2;
const Transform BodyAttach(Rotation(), Vec3(HalfShape[0],0,0));
Body::Rigid brickBody(MassProperties(Mass, Vec3(.1,.2,.3),
Mass*Inertia(1,1.1,1.2,0.01,0.02,0.03)));
brickBody.addDecoration(Transform(), DecorativeEllipsoid(HalfShape)
.setOpacity(0.25)
.setColor(Blue));
brickBody.addDecoration(BodyAttach,
DecorativeFrame(0.5).setColor(Red));
MobilizedBody::Free brick1(matter.Ground(), Transform(),
brickBody, BodyAttach);
brick1.addBodyDecoration(Transform(), DecorativeText("1").setScale(.25));
// This mobilizer is used to match the kinematics of a "reverse" direction
// bushing where Ground is body 2.
MobilizedBody::Bushing brick2(matter.Ground(), Vec3(1,1,1)+Vec3(2,0,0),
brickBody, BodyAttach, MobilizedBody::Reverse);
brick2.addBodyDecoration(Transform(), DecorativeText("2").setScale(.25));
const Vec6 k = Test::randVec<6>().abs(); // must be > 0
const Vec6 c = Test::randVec<6>().abs(); // "
Transform GroundAttach(Rotation(), Vec3(1,1,1));
matter.Ground().updBody().addDecoration(GroundAttach,
DecorativeFrame(0.5).setColor(Green));
const Vec6 k1 = k;
const Vec6 c1 = c;
// This is reversed -- the moving body is the first body
// for the bushing; Ground is second. This is a hard test because
// the F frame is moving.
Force::LinearBushing bushing
(forces, brick1, BodyAttach, // .5,0,0
matter.Ground(), GroundAttach, // 1,1,1
k1, c1);
Force::LinearBushing bushing2
(forces, brick1, brick2, k, c);
Transform GroundAttach2(Rotation(), Vec3(1,1,1) + Vec3(2,0,0));
matter.Ground().updBody().addDecoration(GroundAttach2,
DecorativeFrame(0.5).setColor(Green));
const Vec6 k2 = k;
const Vec6 c2 = c;
// This is the set of force elements that mimics the bushing hooked
// up in the reverse direction.
Force::MobilityLinearSpring kqx(forces, brick2, 0, k2[0], 0);
Force::MobilityLinearDamper cqx(forces, brick2, 0, c2[0]);
Force::MobilityLinearSpring kqy(forces, brick2, 1, k2[1], 0);
Force::MobilityLinearDamper cqy(forces, brick2, 1, c2[1]);
Force::MobilityLinearSpring kqz(forces, brick2, 2, k2[2], 0);
Force::MobilityLinearDamper cqz(forces, brick2, 2, c2[2]);
Force::MobilityLinearSpring kpx(forces, brick2, 3, k2[3], 0);
Force::MobilityLinearDamper cpx(forces, brick2, 3, c2[3]);
Force::MobilityLinearSpring kpy(forces, brick2, 4, k2[4], 0);
Force::MobilityLinearDamper cpy(forces, brick2, 4, c2[4]);
Force::MobilityLinearSpring kpz(forces, brick2, 5, k2[5], 0);
Force::MobilityLinearDamper cpz(forces, brick2, 5, c2[5]);
#ifdef VISUALIZE
Visualizer viz(system);
viz.setBackgroundType(Visualizer::SolidColor);
system.addEventReporter(new Visualizer::Reporter(viz, 0.01));
#endif
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
REPORT(state);
Rotation RR = Test::randRotation();
brick1.setQToFitTransform(state, RR);
system.realize(state, Stage::Position);
cout << "\nbrick1 .q=" << brick1.getQ(state) << endl;
cout << "bushing.q=" << bushing.getQ(state) << endl;
brick2.setQToFitTransform(state, Transform(RR, -Vec3(1,1,1)));
cout << "brick2 .q=" << brick2.getQ(state) << endl;
REPORT(state);
WAIT_FOR_INPUT("testForcesUsingBushing() trial pose -- hit ENTER\n");
system.realize(state,Stage::Acceleration);
//cout << "\nf=" << bushing.getF(state) << endl;
//cout << "F_GM=" << bushing.getF_GM(state) << endl;
cout << "F_GF=" << bushing.getF_GF(state) << endl;
Vector_<SpatialVec> reactions;
matter.calcMobilizerReactionForces(state, reactions);
cout << "Reaction force on brick2="
<< reactions[brick2.getMobilizedBodyIndex()] << endl;
SimTK_TEST_EQ(bushing.getF_GF(state),
reactions[brick2.getMobilizedBodyIndex()]);
}
int main() {
SimTK_START_TEST("TestLinearBushing");
SimTK_SUBTEST(testParameterSetting);
SimTK_SUBTEST(testKinematicsAndEnergyConservation);
SimTK_SUBTEST(testKinematicsAndEnergyConservationUsingBushingMobilizer);
SimTK_SUBTEST(testForces);
SimTK_SUBTEST(testForcesUsingReverseBushingMobilizer);
SimTK_END_TEST();
}
|