1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
/* -------------------------------------------------------------------------- *
* Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2008-12 Stanford University and the Authors. *
* Authors: Peter Eastman *
* Contributors: Michael Sherman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKsimbody.h"
#include "SimTKcommon/Testing.h"
using namespace SimTK;
using namespace std;
const Real TOL = 1e-10;
const Real BOND_LENGTH = 0.5;
#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}
template <class T>
void assertEqual(T val1, T val2, double tol=TOL) {
ASSERT(abs(val1-val2) < tol);
}
template <int N>
void assertEqual(Vec<N> val1, Vec<N> val2, double tol) {
double norm = max(val1.norm(), 1.0);
for (int i = 0; i < N; ++i)
ASSERT(abs(val1[i]-val2[i]) < tol*norm);
}
template<>
void assertEqual(Vector val1, Vector val2, double tol) {
ASSERT(val1.size() == val2.size());
for (int i = 0; i < val1.size(); ++i)
assertEqual(val1[i], val2[i], tol);
}
template<>
void assertEqual(SpatialVec val1, SpatialVec val2, double tol) {
assertEqual(val1[0], val2[0], tol);
assertEqual(val1[1], val2[1], tol);
}
template<>
void assertEqual(Transform val1, Transform val2, double tol) {
assertEqual(val1.p(), val2.p(), tol);
ASSERT(val1.R().isSameRotationToWithinAngle(val2.R(), tol));
}
void compareReactionToConstraint(SpatialVec reactionForce, const Constraint& constraint, const State& state) {
Vector_<SpatialVec> constraintForce(constraint.getNumConstrainedBodies());
Vector mobilityForce(constraint.getNumConstrainedU(state));
constraint.calcConstraintForcesFromMultipliers(state, constraint.getMultipliersAsVector(state), constraintForce, mobilityForce);
// Transform the reaction force from the joint location to the body location.
const MobilizedBody& body = constraint.getMobilizedBodyFromConstrainedBody(ConstrainedBodyIndex(1));
Vec3 localForce = ~body.getBodyTransform(state).R()*reactionForce[1];
reactionForce[0] += body.getBodyTransform(state).R()*(body.getOutboardFrame(state).p()%localForce);
assertEqual(reactionForce, -1*constraint.getAncestorMobilizedBody().getBodyRotation(state)*constraintForce[1]);
}
/**
* Compare the forces generated by equivalent mobilizers and constraints.
*/
void testByComparingToConstraints() {
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::UniformGravity(forces, matter, Vec3(0, -9.8, 0));
// Create two free joints (which should produce no reaction forces).
Body::Rigid body = Body::Rigid(MassProperties(1.3, Vec3(0), Inertia(1.3)));
MobilizedBody::Free f1(matter.updGround(), Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
MobilizedBody::Free f2(f1, Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
// Two ball joints, and two free joints constrained to act like ball joints.
MobilizedBody::Free fb1(matter.updGround(), Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
MobilizedBody::Free fb2(fb1, Transform(Vec3(0, 0, BOND_LENGTH)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
Constraint::Ball fb1constraint(matter.updGround(), Vec3(0, 0, 0), fb1, Vec3(BOND_LENGTH, 0, 0));
Constraint::Ball fb2constraint(fb1, Vec3(0, 0, BOND_LENGTH), fb2, Vec3(BOND_LENGTH, 0, 0));
MobilizedBody::Ball b1(matter.updGround(), Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
MobilizedBody::Ball b2(b1, Transform(Vec3(0, 0, BOND_LENGTH)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
Force::ConstantTorque(forces, fb2, Vec3(0.1, 0.1, 1.0));
Force::ConstantTorque(forces, b2, Vec3(0.1, 0.1, 1.0));
// Two translation joints, and two free joints constrained to act like translation joints.
MobilizedBody::Free ft1(matter.updGround(), Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
MobilizedBody::Free ft2(ft1, Transform(Vec3(0)), body, Transform(Vec3(0, BOND_LENGTH, 0)));
Constraint::ConstantOrientation ft1constraint(matter.updGround(), Rotation(0, Vec3(1)), ft1, Rotation(0, Vec3(1)));
Constraint::ConstantOrientation ft2constraint(ft1, Rotation(0, Vec3(1)), ft2, Rotation(0, Vec3(1)));
MobilizedBody::Translation t1(matter.updGround(), Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
MobilizedBody::Translation t2(t1, Transform(Vec3(0)), body, Transform(Vec3(0, BOND_LENGTH, 0)));
Force::ConstantTorque(forces, ft2, Vec3(0.1, 0.1, 1.0));
Force::ConstantTorque(forces, t2, Vec3(0.1, 0.1, 1.0));
// Create the state.
system.realizeTopology();
State state = system.getDefaultState();
Random::Gaussian random;
int nq = state.getNQ()/2;
for (int i = 0; i < state.getNY(); ++i)
state.updY()[i] = random.getValue();
system.realize(state, Stage::Velocity);
Transform b1transform = b1.getMobilizerTransform(state);
Transform b2transform = b2.getMobilizerTransform(state);
SpatialVec b1velocity = b1.getMobilizerVelocity(state);
SpatialVec b2velocity = b2.getMobilizerVelocity(state);
Transform t1transform = t1.getMobilizerTransform(state);
Transform t2transform = t2.getMobilizerTransform(state);
SpatialVec t1velocity = t1.MobilizedBody::getMobilizerVelocity(state);
SpatialVec t2velocity = t2.MobilizedBody::getMobilizerVelocity(state);
fb1.setQToFitTransform(state, b1transform);
fb2.setQToFitTransform(state, b2transform);
fb1.setUToFitVelocity(state, b1velocity);
fb2.setUToFitVelocity(state, b2velocity);
ft1.setQToFitTransform(state, t1transform);
ft2.setQToFitTransform(state, t2transform);
ft1.setUToFitVelocity(state, t1velocity);
ft2.setUToFitVelocity(state, t2velocity);
system.project(state, TOL);
system.realize(state, Stage::Acceleration);
// Make sure the free and constrained bodies really are identical.
assertEqual(b1.getBodyTransform(state), fb1.getBodyTransform(state));
assertEqual(b2.getBodyTransform(state), fb2.getBodyTransform(state));
assertEqual(b1.getBodyVelocity(state), fb1.getBodyVelocity(state));
assertEqual(b2.getBodyVelocity(state), fb2.getBodyVelocity(state));
assertEqual(t1.getBodyTransform(state), ft1.getBodyTransform(state));
assertEqual(t2.getBodyTransform(state), ft2.getBodyTransform(state));
assertEqual(t1.getBodyVelocity(state), ft1.getBodyVelocity(state));
assertEqual(t2.getBodyVelocity(state), ft2.getBodyVelocity(state));
// Calculate the mobility reaction forces.
Vector_<SpatialVec> forcesAtMInG(matter.getNumBodies());
matter.calcMobilizerReactionForces(state, forcesAtMInG);
// Check that the bulk calculation matches the body-by-body calculation.
for (MobilizedBodyIndex bx(0); bx < matter.getNumBodies(); ++bx) {
assertEqual(forcesAtMInG[bx],
matter.getMobilizedBody(bx)
.findMobilizerReactionOnBodyAtMInGround(state));
}
// Make sure all free bodies have no reaction force on them.
assertEqual((forcesAtMInG[f1.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
assertEqual((forcesAtMInG[f2.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
assertEqual((forcesAtMInG[fb1.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
assertEqual((forcesAtMInG[fb2.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
assertEqual((forcesAtMInG[ft1.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
assertEqual((forcesAtMInG[ft2.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
// The reaction forces should match the corresponding constraint forces.
compareReactionToConstraint(forcesAtMInG[b1.getMobilizedBodyIndex()], fb1constraint, state);
compareReactionToConstraint(forcesAtMInG[b2.getMobilizedBodyIndex()], fb2constraint, state);
compareReactionToConstraint(forcesAtMInG[t1.getMobilizedBodyIndex()], ft1constraint, state);
compareReactionToConstraint(forcesAtMInG[t2.getMobilizedBodyIndex()], ft2constraint, state);
}
/*
* (sherm 110919) None of the existing tests caught the problem reported
* in bug #1535 -- incorrect reaction torques sometimes.
* This is a pair of identical two-body pendulums, one done with pin joints
* and one done with equivalent constraints.
*/
void testByComparingToConstraints2() {
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::UniformGravity gravity(forces, matter, Vec3(10, -9.8, 3));
Body::Rigid pendulumBody(MassProperties(1.0, Vec3(0), Inertia(1)));
pendulumBody.addDecoration(Transform(), DecorativeSphere(0.1).setColor(Red));
// First double pendulum, using Pin joints.
Rotation x45(Pi/4, XAxis);
MobilizedBody::Pin pendulum1(matter.updGround(),
Transform(x45,Vec3(0,-1,0)),
pendulumBody,
Transform(Vec3(0, 1, 0)));
MobilizedBody::Pin pendulum1b(pendulum1,
Transform(x45,Vec3(0,-1,0)),
pendulumBody,
Transform(Vec3(0, 1, 0)));
// Second double pendulum, using Free joints plus 5 constraints.
MobilizedBody::Free pendulum2(matter.updGround(),
Transform(x45,Vec3(2,-1,0)),
pendulumBody,
Transform(Vec3(0,1,0)));
Constraint::Ball ballcons2(matter.updGround(), Vec3(2,-1,0),
pendulum2, Vec3(0,1,0));
const Transform& X_GF2 = pendulum2.getDefaultInboardFrame();
const Transform& X_P2M = pendulum2.getDefaultOutboardFrame();
Constraint::ConstantAngle angx2(matter.Ground(), X_GF2.x(),
pendulum2, X_P2M.z());
Constraint::ConstantAngle angy2(matter.Ground(), X_GF2.y(),
pendulum2, X_P2M.z());
MobilizedBody::Free pendulum2b(pendulum2,
Transform(x45,Vec3(0,-1,0)),
pendulumBody,
Transform(Vec3(0,1,0)));
Constraint::Ball ballcons2b(pendulum2, Vec3(0,-1,0),
pendulum2b, Vec3(0,1,0));
const Transform& X_GF2b = pendulum2b.getDefaultInboardFrame();
const Transform& X_P2Mb = pendulum2b.getDefaultOutboardFrame();
Constraint::ConstantAngle angx2b(pendulum2, X_GF2b.x(),
pendulum2b, X_P2Mb.z());
Constraint::ConstantAngle angy2b(pendulum2, X_GF2b.y(),
pendulum2b, X_P2Mb.z());
// Uncomment if you want to see this.
//Visualizer viz(system);
// Initialize the system and state.
system.realizeTopology();
State state = system.getDefaultState();
pendulum1.setOneQ(state, 0, Pi/4);
pendulum1.setOneU(state, 0, 1.0); // initial velocity 1 rad/sec
pendulum1b.setOneU(state, 0, 1.0); // initial velocity 1 rad/sec
pendulum1b.setOneQ(state, 0, Pi/4);
pendulum2.setQToFitRotation(state, Rotation(Pi/4, ZAxis));
pendulum2.setUToFitAngularVelocity(state, Vec3(0,0,1));
pendulum2b.setQToFitRotation(state, Rotation(Pi/4, ZAxis));
pendulum2b.setUToFitAngularVelocity(state, Vec3(0,0,1));
system.realize(state);
//viz.report(state);
const MobodIndex p2x = pendulum2.getMobilizedBodyIndex();
const MobodIndex p2bx = pendulum2b.getMobilizedBodyIndex();
Vector_<SpatialVec> forcesAtMInG, forcesAtBInG, forcesAtFInG;
matter.calcMobilizerReactionForces(state, forcesAtMInG);
// Check that the bulk results match the individual ones, and fill
// up the Vector of reaction on the parent bodies.
forcesAtFInG.resize(forcesAtMInG.size());
for (MobilizedBodyIndex mbx(0); mbx < matter.getNumBodies(); ++mbx) {
SimTK_TEST_EQ(forcesAtMInG[mbx], matter.getMobilizedBody(mbx)
.findMobilizerReactionOnBodyAtMInGround(state));
forcesAtFInG[mbx] = matter.getMobilizedBody(mbx)
.findMobilizerReactionOnParentAtFInGround(state);
}
// Now we'll convert forces on B at M to forces on P at F manually, and
// compare with the ones we got by asking the mobilized body.
Vector_<SpatialVec> forcesAtFInG_byhand(forcesAtMInG.size());
forcesAtFInG_byhand[0] = -forcesAtMInG[0]; // Ground is "welded" at origin
for (MobilizedBodyIndex i(1); i < matter.getNumBodies(); ++i) {
const MobilizedBody& body = matter.getMobilizedBody(i);
const MobilizedBody& parent = body.getParentMobilizedBody();
// Want to shift reaction by p_MF, the vector from M to F across the
// mobilizer, and negate. Can get p_FM; must reexpress in G.
const Vec3& p_FM = body.getMobilizerTransform(state).p();
const Rotation& R_PF = body.getInboardFrame(state).R(); // In parent.
const Rotation& R_GP = parent.getBodyTransform(state).R();
Rotation R_GF = R_GP*R_PF; // F frame orientation in Ground.
Vec3 p_MF_G = -(R_GF*p_FM); // Re-express and negate shift vector.
forcesAtFInG_byhand[i] = -shiftForceBy(forcesAtMInG[i], p_MF_G);
}
SimTK_TEST_EQ(forcesAtFInG, forcesAtFInG_byhand);
// Shift the reaction forces to body origins for easy comparison with
// the reported constraint forces.
forcesAtBInG.resize(forcesAtMInG.size());
const MobodIndex p1x = pendulum1.getMobilizedBodyIndex();
const MobodIndex p1bx = pendulum1b.getMobilizedBodyIndex();
const Rotation& R_G1 = pendulum1.getBodyTransform(state).R();
const Rotation& R_G1b = pendulum1b.getBodyTransform(state).R();
forcesAtBInG[p1x] = shiftForceFromTo(forcesAtMInG[p1x],
R_G1*Vec3(0,1,0), Vec3(0));
forcesAtBInG[p1bx] = shiftForceFromTo(forcesAtMInG[p1bx],
R_G1b*Vec3(0,1,0), Vec3(0));
// Compare those manually-shifted quantities to the ones we can get
// direction from the MobilizedBody.
SpatialVec forcesAtBInG_p1 =
pendulum1.findMobilizerReactionOnBodyAtOriginInGround(state);
SpatialVec forcesAtBInG_p1b =
pendulum1b.findMobilizerReactionOnBodyAtOriginInGround(state);
SimTK_TEST_EQ(forcesAtBInG[p1x], forcesAtBInG_p1);
SimTK_TEST_EQ(forcesAtBInG[p1bx], forcesAtBInG_p1b);
// The constraints apply forces to parent and body; we want to compare
// forces on the body, which will be the second entry here. We're assuming
// the ball and constant angle constraints are ordered the same way; if
// that ever changes the constraints can be queried to find the mobilized
// body index corresponding to the constrained body index.
Vector_<SpatialVec> cons2Forces =
-(ballcons2.getConstrainedBodyForcesAsVector(state)
+ angx2.getConstrainedBodyForcesAsVector(state)
+ angy2.getConstrainedBodyForcesAsVector(state));
Vector_<SpatialVec> cons2bForces =
-(ballcons2b.getConstrainedBodyForcesAsVector(state)
+ angx2b.getConstrainedBodyForcesAsVector(state)
+ angy2b.getConstrainedBodyForcesAsVector(state));
// Couldn't quite make default tolerance on some platforms. This uses
// 10X default.
SimTK_TEST_EQ_SIZE(cons2Forces[1], forcesAtBInG[p1x], 10);
SimTK_TEST_EQ_SIZE(cons2bForces[1], forcesAtBInG[p1bx], 10);
}
/**
* Construct a system of several bodies, and compare the reaction forces to those calculated by SD/FAST.
*/
void testByComparingToSDFAST() {
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::UniformGravity(forces, matter, Vec3(0, -9.8, 0));
// Construct the set of bodies.
Inertia inertia = Inertia(Mat33(0.1, 0.01, 0.01,
0.01, 0.1, 0.01,
0.01, 0.01, 0.1));
MobilizedBody::Slider body1(matter.updGround(), MassProperties(10.0, Vec3(0), inertia));
MobilizedBody::Pin body2(body1, Vec3(0.1, 0.1, 0), MassProperties(20.0, Vec3(0), inertia), Vec3(0, -0.2, 0));
MobilizedBody::Gimbal body3(body2, Vec3(0, 0.2, 0), MassProperties(20.0, Vec3(0), inertia), Vec3(0, -0.2, 0));
MobilizedBody::Pin body4(body3, Vec3(0, 0.2, 0), MassProperties(30.0, Vec3(0), inertia), Vec3(0, -0.2, 0));
State state = system.realizeTopology();
system.realize(state, Stage::Acceleration);
// Calculate reaction forces, and compare to the values that were generated by SD/FAST.
Vector_<SpatialVec> reaction(matter.getNumBodies());
matter.calcMobilizerReactionForces(state, reaction);
assertEqual(~body1.getBodyTransform(state).R()*reaction[body1.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 68.6), Vec3(0, 784.0, 0)));
assertEqual(~body2.getBodyTransform(state).R()*reaction[body2.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(0, 686.0, 0)));
assertEqual(~body3.getBodyTransform(state).R()*reaction[body3.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(0, 490.0, 0)));
assertEqual(~body4.getBodyTransform(state).R()*reaction[body4.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(0, 294.0, 0)));
// Now set it to a different configuration and try again.
body1.setLength(state, 1.0);
body2.setAngle(state, 0.5);
Rotation r;
r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 0.2, ZAxis, -0.1, XAxis, 2.0, YAxis);
body3.setQToFitRotation(state, r);
body4.setAngle(state, -0.5);
system.realize(state, Stage::Acceleration);
matter.calcMobilizerReactionForces(state, reaction);
assertEqual(~body1.getBodyTransform(state).R()*reaction[body1.getMobilizedBodyIndex()], SpatialVec(Vec3(1.647327, 0.783211, 34.088183), Vec3(0, 359.274099, 3.342380)), 1e-5);
assertEqual(~body2.getBodyTransform(state).R()*reaction[body2.getMobilizedBodyIndex()], SpatialVec(Vec3(1.688077, 0.351125, 0), Vec3(55.399123, 267.455570, 3.342380)), 1e-5);
assertEqual(~body3.getBodyTransform(state).R()*reaction[body3.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(-17.757553, 174.663042, -11.383057)), 1e-5);
assertEqual(~body4.getBodyTransform(state).R()*reaction[body4.getMobilizedBodyIndex()], SpatialVec(Vec3(0.910890, 0.082353, 0), Vec3(-13.977214, 74.444715, 4.943682)), 1e-5);
// Try giving it momentum.
state.updQ() = 0.0;
body2.setOneU(state, 0, 1);
body3.setUToFitAngularVelocity(state, Vec3(3, 4, 2));
body4.setOneU(state, 0, 5);
system.realize(state, Stage::Acceleration);
matter.calcMobilizerReactionForces(state, reaction);
assertEqual(~body1.getBodyTransform(state).R()*reaction[body1.getMobilizedBodyIndex()], SpatialVec(Vec3(-13.549253, 2.723897, -6.355912), Vec3(0, 34.0, -27.088584)), 1e-5);
assertEqual(~body2.getBodyTransform(state).R()*reaction[body2.getMobilizedBodyIndex()], SpatialVec(Vec3(-10.840395, 0.015039, 0), Vec3(-0.440882, -64.0, -27.088584)), 1e-5);
assertEqual(~body3.getBodyTransform(state).R()*reaction[body3.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(0.692814, -256.000000, -27.088584)), 1e-5);
assertEqual(~body4.getBodyTransform(state).R()*reaction[body4.getMobilizedBodyIndex()], SpatialVec(Vec3(3.276930, -0.281928, 0), Vec3(3.796164, -372.0, 21.472977)), 1e-5);
}
/**
* Construct a system of several bodies, and compare the reaction forces to those calculated by SD/FAST.
*/
void testByComparingToSDFAST2() {
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::UniformGravity(forces, matter, Vec3(0, -9.8065, 0));
// Construct the set of bodies.
Body::Rigid femur(MassProperties(8.806, Vec3(0), Inertia(Vec3(0.1268, 0.0332, 0.1337))));
Body::Rigid tibia(MassProperties(3.510, Vec3(0), Inertia(Vec3(0.0477, 0.0048, 0.0484))));
MobilizedBody::Pin p1(matter.Ground(), Transform(Vec3(0.0000, -0.0700, 0.0935)), femur, Transform(Vec3(0.0020, 0.1715, 0)));
MobilizedBody::Slider p2(p1, Transform(Vec3(0.0033, -0.2294, 0)), tibia, Transform(Vec3(0.0, 0.1862, 0.0)));
State state = system.realizeTopology();
system.realize(state, Stage::Acceleration);
// Calculate reaction forces, and compare to the values that were generated by SD/FAST.
Vector_<SpatialVec> reaction(matter.getNumBodies());
matter.calcMobilizerReactionForces(state, reaction);
assertEqual(~p1.getBodyTransform(state).R()*reaction[p1.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(0.438079, 120.773069, 0)), 1e-5);
assertEqual(~p2.getBodyTransform(state).R()*reaction[p2.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0.014040), Vec3(0, 34.422139, 0)), 1e-5);
// Now set it to a different configuration and try again.
p1.setOneQ(state, 0, -90*NTraits<Real>::getPi()/180);
p2.setOneQ(state, 0, 0.1);
system.realize(state, Stage::Acceleration);
matter.calcMobilizerReactionForces(state, reaction);
assertEqual(~p1.getBodyTransform(state).R()*reaction[p1.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(-39.481457, 10.489344, 0)), 1e-5);
assertEqual(~p2.getBodyTransform(state).R()*reaction[p2.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 1.502242), Vec3(0, 11.035987, 0)), 1e-5);
}
/**
* Construct a system of several bodies and a constraint, and compare the reaction forces to those calculated by SD/FAST.
*/
void testByComparingToSDFASTWithConstraint() {
MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
Force::UniformGravity(forces, matter, Vec3(0, -9.8, 0));
// Construct the set of bodies.
Inertia inertia = Inertia(Mat33(0.1, 0.01, 0.01,
0.01, 0.1, 0.01,
0.01, 0.01, 0.1));
MobilizedBody::Gimbal body1(matter.updGround(),
MassProperties(10.0, Vec3(0), inertia));
MobilizedBody::Gimbal body2(body1, Vec3(0, -0.1, 0.2),
MassProperties(20.0, Vec3(0), inertia), Vec3(0, 0.2, 0));
MobilizedBody::Gimbal body3(body1, Vec3(0, -0.1, -0.2),
MassProperties(20.0, Vec3(0), inertia), Vec3(0, 0.2, 0));
MobilizedBody::Gimbal body4(body2, Vec3(0, -0.2, 0),
MassProperties(30.0, Vec3(0), inertia), Vec3(0, 0.2, 0));
MobilizedBody::Gimbal body5(body3, Vec3(0, -0.2, 0),
MassProperties(30.0, Vec3(0), inertia), Vec3(0, 0.2, 0));
Constraint::Rod constraint(body4, body5, 0.15);
State state = system.realizeTopology();
system.realize(state, Stage::Velocity);
// After I changed the Rod constraint to use distance rather than distance^2
// it assembled slightly differently and then wouldn't pass this test to
// this precision. So I replaced the project() call with the result from
// the older squared equations. The result I was getting from project() with
// the distance equations was:
// 0 0 0 0.188972205696439 0 0 -0.188972205696439 0 0
// 0.062986198663389 0 0 -0.062986198663389 0 0
// which is nearly identical to those below, but different enough to cause
// a failure here. With the same set of q's, the reactions should be the
// same regardless of the equations being used for Rod. (sherm 140506)
//system.project(state, 1e-10);
Real q[15]={0,0,0,0.189000969332574,0,0,-0.189000969332574,0,0,
0.0628990902570866,0,0,-0.0628990902570866,0,0};
state.updQ() = Vector(15, q);
system.realize(state, Stage::Acceleration);
// Calculate reaction forces, and compare to the values that were generated by SD/FAST.
Vector_<SpatialVec> reaction(matter.getNumBodies());
matter.calcMobilizerReactionForces(state, reaction);
assertEqual(~body1.getBodyTransform(state).R()*reaction[body1.getMobilizedBodyIndex()],
SpatialVec(Vec3(0, 0, 0), Vec3(-0.000626, 1077.988912, 0.000030)), 1e-5);
assertEqual(~body2.getBodyTransform(state).R()*reaction[body2.getMobilizedBodyIndex()],
SpatialVec(Vec3(0, 0, 0), Vec3(-0.005038, 495.288692, -18.767467)), 1e-5);
assertEqual(~body3.getBodyTransform(state).R()*reaction[body3.getMobilizedBodyIndex()],
SpatialVec(Vec3(0, 0, 0), Vec3(0.004236, 495.287857, 18.767535)), 1e-5);
assertEqual(~body4.getBodyTransform(state).R()*reaction[body4.getMobilizedBodyIndex()],
SpatialVec(Vec3(0, 0, 0), Vec3(0.006251, 303.365940, -0.202330)), 1e-5);
assertEqual(~body5.getBodyTransform(state).R()*reaction[body5.getMobilizedBodyIndex()],
SpatialVec(Vec3(0, 0, 0), Vec3(-0.005933, 303.365472, 0.202301)), 1e-5);
// Now set it to a different configuration and try again.
Rotation r;
r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 1.0, ZAxis, 1.0, XAxis, 1.0, YAxis);
body1.setQToFitRotation(state, r);
r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 0.433843, ZAxis, 0.647441, XAxis, 0.500057, YAxis);
body2.setQToFitRotation(state, r);
r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 0.066156, ZAxis, -0.117266, XAxis, -0.047605, YAxis);
body3.setQToFitRotation(state, r);
r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 0.000997, ZAxis, 0.055206, XAxis, 0.0, YAxis);
body4.setQToFitRotation(state, r);
r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 1.008746, ZAxis, 0.951972, XAxis, 1.0, YAxis);
body5.setQToFitRotation(state, r);
system.realize(state, Stage::Acceleration);
matter.calcMobilizerReactionForces(state, reaction);
assertEqual(~body1.getBodyTransform(state).R()*reaction[body1.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(99.121319, 139.500095, 95.065409)), 1e-5);
assertEqual(~body2.getBodyTransform(state).R()*reaction[body2.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(15.359115, 55.876994, 22.508078)), 1e-5);
assertEqual(~body3.getBodyTransform(state).R()*reaction[body3.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(15.696393, 65.002065, 13.133021)), 1e-5);
assertEqual(~body4.getBodyTransform(state).R()*reaction[body4.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(-6.262023, 32.714510, -9.770708)), 1e-5);
assertEqual(~body5.getBodyTransform(state).R()*reaction[body5.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(10.471620, 0.963822, -4.640161)), 1e-5);
}
// Create a free body in space and apply some forces to it.
// As long as we don't apply mobility forces, the reaction force
// in the mobilizer should be zero.
// It is important to do this with a full inertia, offset com,
// non-unit mass, twisted frames, non-zero velocities, etc.
const Real d = 1.5; // length (m)
const Real mass = 2; // kg
const Transform X_GF(Rotation(Pi/3, Vec3(.1,-.3,.3)), Vec3(-4,-5,-1));
const Transform X_BM(Rotation(-Pi/10, Vec3(7,5,3)), Vec3(0,d,0));
void testFreeMobilizer() {
MultibodySystem forward;
SimbodyMatterSubsystem fwdMatter(forward);
GeneralForceSubsystem fwdForces(forward);
Force::UniformGravity(fwdForces, fwdMatter, Vec3(0, -1, 0));
const Vec3 com(1,2,3);
const UnitInertia centralGyration(1, 1.5, 2, .1, .2, .3);
Body::Rigid body(MassProperties(mass, com, mass*centralGyration.shiftFromMassCenter(com, 1)));
MobilizedBody::Free fwdA (fwdMatter.Ground(), X_GF, body, X_BM);
Force::ConstantForce(fwdForces, fwdA, Vec3(-1,.27,4), Vec3(5,.6,-1));
Force::ConstantTorque(fwdForces, fwdA, Vec3(-5.5,1.6,-1.1));
State fwdState = forward.realizeTopology();
fwdA.setQToFitTransform(fwdState, Transform(Rotation(Pi/9,Vec3(-1.8,4,2.2)), Vec3(.1,.2,.7)));
forward.realize (fwdState, Stage::Position);
fwdA.setUToFitVelocity(fwdState, SpatialVec(Vec3(.99,2,4), Vec3(-1.2,4,.000333)));
forward.realize (fwdState, Stage::Velocity);
forward.realize (fwdState, Stage::Acceleration);
Vector_<SpatialVec> fwdReac;
fwdMatter.calcMobilizerReactionForces(fwdState, fwdReac);
// We expect no reaction from a Free joint.
assertEqual(fwdReac[0], SpatialVec(Vec3(0)));
assertEqual(fwdReac[1], SpatialVec(Vec3(0)));
}
int main() {
SimTK_START_TEST("TestMobilizerReactionForces");
SimTK_SUBTEST(testByComparingToConstraints);
SimTK_SUBTEST(testByComparingToConstraints2);
SimTK_SUBTEST(testByComparingToSDFAST);
SimTK_SUBTEST(testByComparingToSDFAST2);
SimTK_SUBTEST(testByComparingToSDFASTWithConstraint);
SimTK_SUBTEST(testFreeMobilizer);
SimTK_END_TEST();
}
|