File: TestMobilizerReactionForces.cpp

package info (click to toggle)
simbody 3.7%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 72,892 kB
  • sloc: cpp: 248,827; ansic: 18,240; sh: 29; makefile: 25
file content (570 lines) | stat: -rw-r--r-- 30,248 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/* -------------------------------------------------------------------------- *
 *                               Simbody(tm)                                  *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2008-12 Stanford University and the Authors.        *
 * Authors: Peter Eastman                                                     *
 * Contributors: Michael Sherman                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "SimTKsimbody.h"
#include "SimTKcommon/Testing.h"

using namespace SimTK;
using namespace std;

const Real TOL = 1e-10;
const Real BOND_LENGTH = 0.5;

#define ASSERT(cond) {SimTK_ASSERT_ALWAYS(cond, "Assertion failed");}

template <class T>
void assertEqual(T val1, T val2, double tol=TOL) {
    ASSERT(abs(val1-val2) < tol);
}

template <int N>
void assertEqual(Vec<N> val1, Vec<N> val2, double tol) {
    double norm = max(val1.norm(), 1.0);
    for (int i = 0; i < N; ++i)
        ASSERT(abs(val1[i]-val2[i]) < tol*norm);
}

template<>
void assertEqual(Vector val1, Vector val2, double tol) {
    ASSERT(val1.size() == val2.size());
    for (int i = 0; i < val1.size(); ++i)
        assertEqual(val1[i], val2[i], tol);
}

template<>
void assertEqual(SpatialVec val1, SpatialVec val2, double tol) {
    assertEqual(val1[0], val2[0], tol);
    assertEqual(val1[1], val2[1], tol);
}

template<>
void assertEqual(Transform val1, Transform val2, double tol) {
    assertEqual(val1.p(), val2.p(), tol);
    ASSERT(val1.R().isSameRotationToWithinAngle(val2.R(), tol));
}

void compareReactionToConstraint(SpatialVec reactionForce, const Constraint& constraint, const State& state) {
    Vector_<SpatialVec> constraintForce(constraint.getNumConstrainedBodies());
    Vector mobilityForce(constraint.getNumConstrainedU(state));
    constraint.calcConstraintForcesFromMultipliers(state, constraint.getMultipliersAsVector(state), constraintForce, mobilityForce);
    
    // Transform the reaction force from the joint location to the body location.
    
    const MobilizedBody& body = constraint.getMobilizedBodyFromConstrainedBody(ConstrainedBodyIndex(1));
    Vec3 localForce = ~body.getBodyTransform(state).R()*reactionForce[1];
    reactionForce[0] += body.getBodyTransform(state).R()*(body.getOutboardFrame(state).p()%localForce);
    assertEqual(reactionForce, -1*constraint.getAncestorMobilizedBody().getBodyRotation(state)*constraintForce[1]);
}

/**
 * Compare the forces generated by equivalent mobilizers and constraints.
 */

void testByComparingToConstraints() {
    MultibodySystem system;
    SimbodyMatterSubsystem matter(system);
    GeneralForceSubsystem forces(system);
    Force::UniformGravity(forces, matter, Vec3(0, -9.8, 0));
    
    // Create two free joints (which should produce no reaction forces).
    
    Body::Rigid body = Body::Rigid(MassProperties(1.3, Vec3(0), Inertia(1.3)));
    MobilizedBody::Free f1(matter.updGround(), Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
    MobilizedBody::Free f2(f1, Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
    
    // Two ball joints, and two free joints constrained to act like ball joints.
    
    MobilizedBody::Free fb1(matter.updGround(), Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
    MobilizedBody::Free fb2(fb1, Transform(Vec3(0, 0, BOND_LENGTH)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
    Constraint::Ball fb1constraint(matter.updGround(), Vec3(0, 0, 0), fb1, Vec3(BOND_LENGTH, 0, 0));
    Constraint::Ball fb2constraint(fb1, Vec3(0, 0, BOND_LENGTH), fb2, Vec3(BOND_LENGTH, 0, 0));
    MobilizedBody::Ball b1(matter.updGround(), Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
    MobilizedBody::Ball b2(b1, Transform(Vec3(0, 0, BOND_LENGTH)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
    Force::ConstantTorque(forces, fb2, Vec3(0.1, 0.1, 1.0));
    Force::ConstantTorque(forces, b2, Vec3(0.1, 0.1, 1.0));
    
    // Two translation joints, and two free joints constrained to act like translation joints.

    MobilizedBody::Free ft1(matter.updGround(), Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
    MobilizedBody::Free ft2(ft1, Transform(Vec3(0)), body, Transform(Vec3(0, BOND_LENGTH, 0)));
    Constraint::ConstantOrientation ft1constraint(matter.updGround(), Rotation(0, Vec3(1)), ft1, Rotation(0, Vec3(1)));
    Constraint::ConstantOrientation ft2constraint(ft1, Rotation(0, Vec3(1)), ft2, Rotation(0, Vec3(1)));
    MobilizedBody::Translation t1(matter.updGround(), Transform(Vec3(0)), body, Transform(Vec3(BOND_LENGTH, 0, 0)));
    MobilizedBody::Translation t2(t1, Transform(Vec3(0)), body, Transform(Vec3(0, BOND_LENGTH, 0)));
    Force::ConstantTorque(forces, ft2, Vec3(0.1, 0.1, 1.0));
    Force::ConstantTorque(forces, t2, Vec3(0.1, 0.1, 1.0));
    
    // Create the state.
    
    system.realizeTopology();
    State state = system.getDefaultState();
    Random::Gaussian random;
    int nq = state.getNQ()/2;
    for (int i = 0; i < state.getNY(); ++i)
        state.updY()[i] = random.getValue();
    system.realize(state, Stage::Velocity);
    Transform b1transform = b1.getMobilizerTransform(state);
    Transform b2transform = b2.getMobilizerTransform(state);
    SpatialVec b1velocity = b1.getMobilizerVelocity(state);
    SpatialVec b2velocity = b2.getMobilizerVelocity(state);
    Transform t1transform = t1.getMobilizerTransform(state);
    Transform t2transform = t2.getMobilizerTransform(state);
    SpatialVec t1velocity = t1.MobilizedBody::getMobilizerVelocity(state);
    SpatialVec t2velocity = t2.MobilizedBody::getMobilizerVelocity(state);
    fb1.setQToFitTransform(state, b1transform);
    fb2.setQToFitTransform(state, b2transform);
    fb1.setUToFitVelocity(state, b1velocity);
    fb2.setUToFitVelocity(state, b2velocity);
    ft1.setQToFitTransform(state, t1transform);
    ft2.setQToFitTransform(state, t2transform);
    ft1.setUToFitVelocity(state, t1velocity);
    ft2.setUToFitVelocity(state, t2velocity);

    system.project(state, TOL);
    system.realize(state, Stage::Acceleration);
    
    // Make sure the free and constrained bodies really are identical.
    
    assertEqual(b1.getBodyTransform(state), fb1.getBodyTransform(state));
    assertEqual(b2.getBodyTransform(state), fb2.getBodyTransform(state));
    assertEqual(b1.getBodyVelocity(state), fb1.getBodyVelocity(state));
    assertEqual(b2.getBodyVelocity(state), fb2.getBodyVelocity(state));
    assertEqual(t1.getBodyTransform(state), ft1.getBodyTransform(state));
    assertEqual(t2.getBodyTransform(state), ft2.getBodyTransform(state));
    assertEqual(t1.getBodyVelocity(state), ft1.getBodyVelocity(state));
    assertEqual(t2.getBodyVelocity(state), ft2.getBodyVelocity(state));
    
    // Calculate the mobility reaction forces.

    Vector_<SpatialVec> forcesAtMInG(matter.getNumBodies());
    matter.calcMobilizerReactionForces(state, forcesAtMInG);



    // Check that the bulk calculation matches the body-by-body calculation.
    for (MobilizedBodyIndex bx(0); bx < matter.getNumBodies(); ++bx) {
        assertEqual(forcesAtMInG[bx], 
            matter.getMobilizedBody(bx)
               .findMobilizerReactionOnBodyAtMInGround(state));
    }

    // Make sure all free bodies have no reaction force on them.
    
    assertEqual((forcesAtMInG[f1.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
    assertEqual((forcesAtMInG[f2.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
    assertEqual((forcesAtMInG[fb1.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
    assertEqual((forcesAtMInG[fb2.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
    assertEqual((forcesAtMInG[ft1.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
    assertEqual((forcesAtMInG[ft2.getMobilizedBodyIndex()]), SpatialVec(Vec3(0), Vec3(0)));
    
    // The reaction forces should match the corresponding constraint forces.
    
    compareReactionToConstraint(forcesAtMInG[b1.getMobilizedBodyIndex()], fb1constraint, state);
    compareReactionToConstraint(forcesAtMInG[b2.getMobilizedBodyIndex()], fb2constraint, state);
    compareReactionToConstraint(forcesAtMInG[t1.getMobilizedBodyIndex()], ft1constraint, state);
    compareReactionToConstraint(forcesAtMInG[t2.getMobilizedBodyIndex()], ft2constraint, state);
}

/*
 * (sherm 110919) None of the existing tests caught the problem reported
 * in bug #1535 -- incorrect reaction torques sometimes.
 * This is a pair of identical two-body pendulums, one done with pin joints
 * and one done with equivalent constraints.
 */
void testByComparingToConstraints2() {
    MultibodySystem system;
    SimbodyMatterSubsystem matter(system);
    GeneralForceSubsystem forces(system);
    Force::UniformGravity gravity(forces, matter, Vec3(10, -9.8, 3));

    Body::Rigid pendulumBody(MassProperties(1.0, Vec3(0), Inertia(1)));
    pendulumBody.addDecoration(Transform(), DecorativeSphere(0.1).setColor(Red));

    // First double pendulum, using Pin joints.
    Rotation x45(Pi/4, XAxis);
    MobilizedBody::Pin pendulum1(matter.updGround(), 
                                Transform(x45,Vec3(0,-1,0)), 
                                pendulumBody, 
                                Transform(Vec3(0, 1, 0)));
    MobilizedBody::Pin pendulum1b(pendulum1, 
                                Transform(x45,Vec3(0,-1,0)), 
                                pendulumBody, 
                                Transform(Vec3(0, 1, 0)));

    // Second double pendulum, using Free joints plus 5 constraints.
    MobilizedBody::Free pendulum2(matter.updGround(), 
                                  Transform(x45,Vec3(2,-1,0)),
                                  pendulumBody, 
                                  Transform(Vec3(0,1,0)));
    Constraint::Ball ballcons2(matter.updGround(), Vec3(2,-1,0),
                               pendulum2, Vec3(0,1,0));
    const Transform& X_GF2 = pendulum2.getDefaultInboardFrame();
    const Transform& X_P2M = pendulum2.getDefaultOutboardFrame();
    Constraint::ConstantAngle angx2(matter.Ground(), X_GF2.x(),
                              pendulum2, X_P2M.z());
    Constraint::ConstantAngle angy2(matter.Ground(), X_GF2.y(),
                              pendulum2, X_P2M.z());

    MobilizedBody::Free pendulum2b(pendulum2, 
                                   Transform(x45,Vec3(0,-1,0)),
                                   pendulumBody, 
                                   Transform(Vec3(0,1,0)));
    Constraint::Ball ballcons2b(pendulum2, Vec3(0,-1,0),
                                pendulum2b, Vec3(0,1,0));
    const Transform& X_GF2b = pendulum2b.getDefaultInboardFrame();
    const Transform& X_P2Mb = pendulum2b.getDefaultOutboardFrame();
    Constraint::ConstantAngle angx2b(pendulum2, X_GF2b.x(),
                              pendulum2b, X_P2Mb.z());
    Constraint::ConstantAngle angy2b(pendulum2, X_GF2b.y(),
                              pendulum2b, X_P2Mb.z());

    // Uncomment if you want to see this.
    //Visualizer viz(system);
    
    // Initialize the system and state.
    
    system.realizeTopology();
    State state = system.getDefaultState();
    pendulum1.setOneQ(state, 0, Pi/4);
    pendulum1.setOneU(state, 0, 1.0); // initial velocity 1 rad/sec

    pendulum1b.setOneU(state, 0, 1.0); // initial velocity 1 rad/sec
    pendulum1b.setOneQ(state, 0, Pi/4);

    pendulum2.setQToFitRotation(state, Rotation(Pi/4, ZAxis));
    pendulum2.setUToFitAngularVelocity(state, Vec3(0,0,1));
    pendulum2b.setQToFitRotation(state, Rotation(Pi/4, ZAxis));
    pendulum2b.setUToFitAngularVelocity(state, Vec3(0,0,1));

    system.realize(state);
    //viz.report(state);

    const MobodIndex p2x = pendulum2.getMobilizedBodyIndex();
    const MobodIndex p2bx = pendulum2b.getMobilizedBodyIndex();


    Vector_<SpatialVec> forcesAtMInG, forcesAtBInG, forcesAtFInG;
    matter.calcMobilizerReactionForces(state, forcesAtMInG);

    // Check that the bulk results match the individual ones, and fill
    // up the Vector of reaction on the parent bodies.
    forcesAtFInG.resize(forcesAtMInG.size());
    for (MobilizedBodyIndex mbx(0); mbx < matter.getNumBodies(); ++mbx) {
        SimTK_TEST_EQ(forcesAtMInG[mbx], matter.getMobilizedBody(mbx)
            .findMobilizerReactionOnBodyAtMInGround(state));

        forcesAtFInG[mbx] = matter.getMobilizedBody(mbx)
            .findMobilizerReactionOnParentAtFInGround(state);
    }

    // Now we'll convert forces on B at M to forces on P at F manually, and
    // compare with the ones we got by asking the mobilized body.
    Vector_<SpatialVec> forcesAtFInG_byhand(forcesAtMInG.size());
    forcesAtFInG_byhand[0] = -forcesAtMInG[0]; // Ground is "welded" at origin
    for (MobilizedBodyIndex i(1); i < matter.getNumBodies(); ++i) {
        const MobilizedBody& body   = matter.getMobilizedBody(i);
        const MobilizedBody& parent = body.getParentMobilizedBody();
        // Want to shift reaction by p_MF, the vector from M to F across the
        // mobilizer, and negate. Can get p_FM; must reexpress in G.
        const Vec3& p_FM = body.getMobilizerTransform(state).p();
        const Rotation& R_PF = body.getInboardFrame(state).R(); // In parent.
        const Rotation& R_GP = parent.getBodyTransform(state).R();
        Rotation R_GF   =   R_GP*R_PF;  // F frame orientation in Ground.
        Vec3     p_MF_G = -(R_GF*p_FM); // Re-express and negate shift vector. 
        forcesAtFInG_byhand[i] = -shiftForceBy(forcesAtMInG[i], p_MF_G);
    }

    SimTK_TEST_EQ(forcesAtFInG, forcesAtFInG_byhand);

    // Shift the reaction forces to body origins for easy comparison with
    // the reported constraint forces.
    forcesAtBInG.resize(forcesAtMInG.size());
    const MobodIndex p1x = pendulum1.getMobilizedBodyIndex();
    const MobodIndex p1bx = pendulum1b.getMobilizedBodyIndex();
    const Rotation& R_G1 = pendulum1.getBodyTransform(state).R();
    const Rotation& R_G1b = pendulum1b.getBodyTransform(state).R();
    forcesAtBInG[p1x] = shiftForceFromTo(forcesAtMInG[p1x],
                                         R_G1*Vec3(0,1,0), Vec3(0));
    forcesAtBInG[p1bx] = shiftForceFromTo(forcesAtMInG[p1bx],
                                         R_G1b*Vec3(0,1,0), Vec3(0));

    // Compare those manually-shifted quantities to the ones we can get 
    // direction from the MobilizedBody.
    SpatialVec forcesAtBInG_p1 = 
        pendulum1.findMobilizerReactionOnBodyAtOriginInGround(state);
    SpatialVec forcesAtBInG_p1b = 
        pendulum1b.findMobilizerReactionOnBodyAtOriginInGround(state);

    SimTK_TEST_EQ(forcesAtBInG[p1x], forcesAtBInG_p1);
    SimTK_TEST_EQ(forcesAtBInG[p1bx], forcesAtBInG_p1b);

    // The constraints apply forces to parent and body; we want to compare
    // forces on the body, which will be the second entry here. We're assuming
    // the ball and constant angle constraints are ordered the same way; if
    // that ever changes the constraints can be queried to find the mobilized
    // body index corresponding to the constrained body index.
    Vector_<SpatialVec> cons2Forces = 
        -(ballcons2.getConstrainedBodyForcesAsVector(state)
          + angx2.getConstrainedBodyForcesAsVector(state)
          + angy2.getConstrainedBodyForcesAsVector(state));
    Vector_<SpatialVec> cons2bForces = 
        -(ballcons2b.getConstrainedBodyForcesAsVector(state) 
          + angx2b.getConstrainedBodyForcesAsVector(state)
          + angy2b.getConstrainedBodyForcesAsVector(state));

    // Couldn't quite make default tolerance on some platforms. This uses
    // 10X default.
    SimTK_TEST_EQ_SIZE(cons2Forces[1], forcesAtBInG[p1x], 10);
    SimTK_TEST_EQ_SIZE(cons2bForces[1], forcesAtBInG[p1bx], 10);
}

/**
 * Construct a system of several bodies, and compare the reaction forces to those calculated by SD/FAST.
 */

void testByComparingToSDFAST() {
    MultibodySystem system;
    SimbodyMatterSubsystem matter(system);
    GeneralForceSubsystem forces(system);
    Force::UniformGravity(forces, matter, Vec3(0, -9.8, 0));

    // Construct the set of bodies.
    
    Inertia inertia = Inertia(Mat33(0.1, 0.01, 0.01,
                                    0.01, 0.1, 0.01,
                                    0.01, 0.01, 0.1));
    MobilizedBody::Slider body1(matter.updGround(), MassProperties(10.0, Vec3(0), inertia));
    MobilizedBody::Pin body2(body1, Vec3(0.1, 0.1, 0), MassProperties(20.0, Vec3(0), inertia), Vec3(0, -0.2, 0));
    MobilizedBody::Gimbal body3(body2, Vec3(0, 0.2, 0), MassProperties(20.0, Vec3(0), inertia), Vec3(0, -0.2, 0));
    MobilizedBody::Pin body4(body3, Vec3(0, 0.2, 0), MassProperties(30.0, Vec3(0), inertia), Vec3(0, -0.2, 0));
    State state = system.realizeTopology();
    system.realize(state, Stage::Acceleration);
    
    // Calculate reaction forces, and compare to the values that were generated by SD/FAST.
    
    Vector_<SpatialVec> reaction(matter.getNumBodies());
    matter.calcMobilizerReactionForces(state, reaction);
    assertEqual(~body1.getBodyTransform(state).R()*reaction[body1.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 68.6), Vec3(0, 784.0, 0)));
    assertEqual(~body2.getBodyTransform(state).R()*reaction[body2.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(0, 686.0, 0)));
    assertEqual(~body3.getBodyTransform(state).R()*reaction[body3.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(0, 490.0, 0)));
    assertEqual(~body4.getBodyTransform(state).R()*reaction[body4.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(0, 294.0, 0)));
    
    // Now set it to a different configuration and try again.
    
    body1.setLength(state, 1.0);
    body2.setAngle(state, 0.5);
    Rotation r;
    r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 0.2, ZAxis, -0.1, XAxis, 2.0, YAxis);
    body3.setQToFitRotation(state, r);
    body4.setAngle(state, -0.5);
    system.realize(state, Stage::Acceleration);
    matter.calcMobilizerReactionForces(state, reaction);
    assertEqual(~body1.getBodyTransform(state).R()*reaction[body1.getMobilizedBodyIndex()], SpatialVec(Vec3(1.647327, 0.783211, 34.088183), Vec3(0, 359.274099, 3.342380)), 1e-5);
    assertEqual(~body2.getBodyTransform(state).R()*reaction[body2.getMobilizedBodyIndex()], SpatialVec(Vec3(1.688077, 0.351125, 0), Vec3(55.399123, 267.455570, 3.342380)), 1e-5);
    assertEqual(~body3.getBodyTransform(state).R()*reaction[body3.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(-17.757553, 174.663042, -11.383057)), 1e-5);
    assertEqual(~body4.getBodyTransform(state).R()*reaction[body4.getMobilizedBodyIndex()], SpatialVec(Vec3(0.910890, 0.082353, 0), Vec3(-13.977214, 74.444715, 4.943682)), 1e-5);
    
    // Try giving it momentum.

    state.updQ() = 0.0;
    body2.setOneU(state, 0, 1);
    body3.setUToFitAngularVelocity(state, Vec3(3, 4, 2));
    body4.setOneU(state, 0, 5);
    system.realize(state, Stage::Acceleration);
    matter.calcMobilizerReactionForces(state, reaction);
    assertEqual(~body1.getBodyTransform(state).R()*reaction[body1.getMobilizedBodyIndex()], SpatialVec(Vec3(-13.549253, 2.723897, -6.355912), Vec3(0, 34.0, -27.088584)), 1e-5);
    assertEqual(~body2.getBodyTransform(state).R()*reaction[body2.getMobilizedBodyIndex()], SpatialVec(Vec3(-10.840395, 0.015039, 0), Vec3(-0.440882, -64.0, -27.088584)), 1e-5);
    assertEqual(~body3.getBodyTransform(state).R()*reaction[body3.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(0.692814, -256.000000, -27.088584)), 1e-5);
    assertEqual(~body4.getBodyTransform(state).R()*reaction[body4.getMobilizedBodyIndex()], SpatialVec(Vec3(3.276930, -0.281928, 0), Vec3(3.796164, -372.0, 21.472977)), 1e-5);
}

/**
 * Construct a system of several bodies, and compare the reaction forces to those calculated by SD/FAST.
 */

void testByComparingToSDFAST2() {
    MultibodySystem system;
    SimbodyMatterSubsystem matter(system);
    GeneralForceSubsystem forces(system);
    Force::UniformGravity(forces, matter, Vec3(0, -9.8065, 0));

    // Construct the set of bodies.
    
    Body::Rigid femur(MassProperties(8.806, Vec3(0), Inertia(Vec3(0.1268, 0.0332, 0.1337))));
    Body::Rigid tibia(MassProperties(3.510, Vec3(0), Inertia(Vec3(0.0477, 0.0048, 0.0484))));
    MobilizedBody::Pin p1(matter.Ground(), Transform(Vec3(0.0000, -0.0700, 0.0935)), femur, Transform(Vec3(0.0020, 0.1715, 0)));
    MobilizedBody::Slider p2(p1, Transform(Vec3(0.0033, -0.2294, 0)), tibia, Transform(Vec3(0.0, 0.1862, 0.0)));
    State state = system.realizeTopology();
    system.realize(state, Stage::Acceleration);
    
    // Calculate reaction forces, and compare to the values that were generated by SD/FAST.
    
    Vector_<SpatialVec> reaction(matter.getNumBodies());
    matter.calcMobilizerReactionForces(state, reaction);
    assertEqual(~p1.getBodyTransform(state).R()*reaction[p1.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(0.438079, 120.773069, 0)), 1e-5);
    assertEqual(~p2.getBodyTransform(state).R()*reaction[p2.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0.014040), Vec3(0, 34.422139, 0)), 1e-5);
    
    // Now set it to a different configuration and try again.
    
    p1.setOneQ(state, 0, -90*NTraits<Real>::getPi()/180);
    p2.setOneQ(state, 0, 0.1);
    system.realize(state, Stage::Acceleration);
    matter.calcMobilizerReactionForces(state, reaction);
    assertEqual(~p1.getBodyTransform(state).R()*reaction[p1.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(-39.481457, 10.489344, 0)), 1e-5);
    assertEqual(~p2.getBodyTransform(state).R()*reaction[p2.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 1.502242), Vec3(0, 11.035987, 0)), 1e-5);
}

/**
 * Construct a system of several bodies and a constraint, and compare the reaction forces to those calculated by SD/FAST.
 */

void testByComparingToSDFASTWithConstraint() {
    MultibodySystem system;
    SimbodyMatterSubsystem matter(system);
    GeneralForceSubsystem forces(system);
    Force::UniformGravity(forces, matter, Vec3(0, -9.8, 0));

    // Construct the set of bodies.
    
    Inertia inertia = Inertia(Mat33(0.1, 0.01, 0.01,
                                    0.01, 0.1, 0.01,
                                    0.01, 0.01, 0.1));
    MobilizedBody::Gimbal body1(matter.updGround(), 
        MassProperties(10.0, Vec3(0), inertia));
    MobilizedBody::Gimbal body2(body1, Vec3(0, -0.1, 0.2), 
        MassProperties(20.0, Vec3(0), inertia), Vec3(0, 0.2, 0));
    MobilizedBody::Gimbal body3(body1, Vec3(0, -0.1, -0.2), 
        MassProperties(20.0, Vec3(0), inertia), Vec3(0, 0.2, 0));
    MobilizedBody::Gimbal body4(body2, Vec3(0, -0.2, 0), 
        MassProperties(30.0, Vec3(0), inertia), Vec3(0, 0.2, 0));
    MobilizedBody::Gimbal body5(body3, Vec3(0, -0.2, 0), 
        MassProperties(30.0, Vec3(0), inertia), Vec3(0, 0.2, 0));
    Constraint::Rod constraint(body4, body5, 0.15);
    State state = system.realizeTopology();
    system.realize(state, Stage::Velocity);
    // After I changed the Rod constraint to use distance rather than distance^2
    // it assembled slightly differently and then wouldn't pass this test to
    // this precision. So I replaced the project() call with the result from
    // the older squared equations. The result I was getting from project() with
    // the distance equations was:
    //          0 0 0 0.188972205696439 0 0 -0.188972205696439 0 0 
    //          0.062986198663389 0 0 -0.062986198663389 0 0
    // which is nearly identical to those below, but different enough to cause 
    // a failure here. With the same set of q's, the reactions should be the 
    // same regardless of the equations being used for Rod. (sherm 140506)
    //system.project(state, 1e-10);
    Real q[15]={0,0,0,0.189000969332574,0,0,-0.189000969332574,0,0,
                0.0628990902570866,0,0,-0.0628990902570866,0,0};
    state.updQ() = Vector(15, q);
    system.realize(state, Stage::Acceleration);
    
    // Calculate reaction forces, and compare to the values that were generated by SD/FAST.
    
    Vector_<SpatialVec> reaction(matter.getNumBodies());
    matter.calcMobilizerReactionForces(state, reaction);
    assertEqual(~body1.getBodyTransform(state).R()*reaction[body1.getMobilizedBodyIndex()], 
                SpatialVec(Vec3(0, 0, 0), Vec3(-0.000626, 1077.988912, 0.000030)), 1e-5);
    assertEqual(~body2.getBodyTransform(state).R()*reaction[body2.getMobilizedBodyIndex()], 
                SpatialVec(Vec3(0, 0, 0), Vec3(-0.005038, 495.288692, -18.767467)), 1e-5);
    assertEqual(~body3.getBodyTransform(state).R()*reaction[body3.getMobilizedBodyIndex()], 
                SpatialVec(Vec3(0, 0, 0), Vec3(0.004236, 495.287857, 18.767535)), 1e-5);
    assertEqual(~body4.getBodyTransform(state).R()*reaction[body4.getMobilizedBodyIndex()], 
                SpatialVec(Vec3(0, 0, 0), Vec3(0.006251, 303.365940, -0.202330)), 1e-5);
    assertEqual(~body5.getBodyTransform(state).R()*reaction[body5.getMobilizedBodyIndex()], 
                SpatialVec(Vec3(0, 0, 0), Vec3(-0.005933, 303.365472, 0.202301)), 1e-5);
    
    // Now set it to a different configuration and try again.
    
    Rotation r;
    r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 1.0, ZAxis, 1.0, XAxis, 1.0, YAxis);
    body1.setQToFitRotation(state, r);
    r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 0.433843, ZAxis, 0.647441, XAxis, 0.500057, YAxis);
    body2.setQToFitRotation(state, r);
    r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 0.066156, ZAxis, -0.117266, XAxis, -0.047605, YAxis);
    body3.setQToFitRotation(state, r);
    r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 0.000997, ZAxis, 0.055206, XAxis, 0.0, YAxis);
    body4.setQToFitRotation(state, r);
    r.setRotationFromThreeAnglesThreeAxes(BodyRotationSequence, 1.008746, ZAxis, 0.951972, XAxis, 1.0, YAxis);
    body5.setQToFitRotation(state, r);
    system.realize(state, Stage::Acceleration);
    matter.calcMobilizerReactionForces(state, reaction);
    assertEqual(~body1.getBodyTransform(state).R()*reaction[body1.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(99.121319, 139.500095, 95.065409)), 1e-5);
    assertEqual(~body2.getBodyTransform(state).R()*reaction[body2.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(15.359115, 55.876994, 22.508078)), 1e-5);
    assertEqual(~body3.getBodyTransform(state).R()*reaction[body3.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(15.696393, 65.002065, 13.133021)), 1e-5);
    assertEqual(~body4.getBodyTransform(state).R()*reaction[body4.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(-6.262023, 32.714510, -9.770708)), 1e-5);
    assertEqual(~body5.getBodyTransform(state).R()*reaction[body5.getMobilizedBodyIndex()], SpatialVec(Vec3(0, 0, 0), Vec3(10.471620, 0.963822, -4.640161)), 1e-5);
}

// Create a free body in space and apply some forces to it.
// As long as we don't apply mobility forces, the reaction force
// in the mobilizer should be zero.
// It is important to do this with a full inertia, offset com,
// non-unit mass, twisted frames, non-zero velocities, etc.

const Real d = 1.5; // length (m)
const Real mass = 2; // kg
const Transform X_GF(Rotation(Pi/3, Vec3(.1,-.3,.3)), Vec3(-4,-5,-1));
const Transform X_BM(Rotation(-Pi/10, Vec3(7,5,3)), Vec3(0,d,0));

void testFreeMobilizer() {
    MultibodySystem forward;
    SimbodyMatterSubsystem fwdMatter(forward);
    GeneralForceSubsystem fwdForces(forward);
    Force::UniformGravity(fwdForces, fwdMatter, Vec3(0, -1, 0));

    const Vec3 com(1,2,3);
    const UnitInertia centralGyration(1, 1.5, 2, .1, .2, .3);
    Body::Rigid body(MassProperties(mass, com, mass*centralGyration.shiftFromMassCenter(com, 1)));

    MobilizedBody::Free fwdA (fwdMatter.Ground(),  X_GF, body, X_BM);

    Force::ConstantForce(fwdForces, fwdA, Vec3(-1,.27,4), Vec3(5,.6,-1));
    Force::ConstantTorque(fwdForces, fwdA, Vec3(-5.5,1.6,-1.1));

    State fwdState  = forward.realizeTopology();
    fwdA.setQToFitTransform(fwdState, Transform(Rotation(Pi/9,Vec3(-1.8,4,2.2)), Vec3(.1,.2,.7)));

    forward.realize (fwdState,  Stage::Position);

    fwdA.setUToFitVelocity(fwdState, SpatialVec(Vec3(.99,2,4), Vec3(-1.2,4,.000333)));
    forward.realize (fwdState,  Stage::Velocity);
    forward.realize (fwdState,  Stage::Acceleration);

    Vector_<SpatialVec> fwdReac;
    fwdMatter.calcMobilizerReactionForces(fwdState, fwdReac);

    // We expect no reaction from a Free joint.
    assertEqual(fwdReac[0], SpatialVec(Vec3(0)));
    assertEqual(fwdReac[1], SpatialVec(Vec3(0)));
}

int main() {
    SimTK_START_TEST("TestMobilizerReactionForces");
        SimTK_SUBTEST(testByComparingToConstraints);
        SimTK_SUBTEST(testByComparingToConstraints2);
        SimTK_SUBTEST(testByComparingToSDFAST);
        SimTK_SUBTEST(testByComparingToSDFAST2);
        SimTK_SUBTEST(testByComparingToSDFASTWithConstraint);
        SimTK_SUBTEST(testFreeMobilizer);
    SimTK_END_TEST();
}