File: dom.md

package info (click to toggle)
simdjson 4.2.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 27,936 kB
  • sloc: cpp: 171,612; ansic: 19,122; sh: 1,126; python: 842; makefile: 47; ruby: 25; javascript: 13
file content (854 lines) | stat: -rw-r--r-- 36,887 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
The Document-Object-Model (DOM) front-end
==========

An overview of what you need to know to use simdjson to parse JSON documents with
our DOM API, with examples. [Our documentation regarding the generation (serialization) of JSON documents is in a
separate document](https://github.com/simdjson/simdjson/blob/master/doc/builder.md).


* [DOM vs On-Demand](#dom-vs-on-demand)
* [The Basics: Loading and Parsing JSON Documents](#the-basics-loading-and-parsing-json-documents-using-the-dom-front-end)
* [Using the Parsed JSON](#using-the-parsed-json)
* [C++17 Support](#c17-support)
* [C++20 Support](#c20-support)
* [JSON Pointer](#json-pointer)
* [JSONPath](#jsonpath)
* [Error Handling](#error-handling)
  * [Error Handling Example](#error-handling-example)
  * [Exceptions](#exceptions)
* [Tree Walking and JSON Element Types](#tree-walking-and-json-element-types)
* [Reusing the parser for maximum efficiency](#reusing-the-parser-for-maximum-efficiency)
* [Server Loops: Long-Running Processes and Memory Capacity](#server-loops-long-running-processes-and-memory-capacity)
* [Best Use of the DOM API](#best-use-of-the-dom-api)
* [Padding and Temporary Copies](#padding-and-temporary-copies)
* [Performance Tips](#performance-tips)

DOM vs On-Demand
----------------------------------------------

The simdjson library offers two distinct approaches on how to access a JSON document. We support
a conventional Document-Object-Model (DOM) front-end. In such a scenario, the JSON document is
entirely parsed, validated and materialized in memory as the first step. The programmer may
then access the parsed data using this in-memory model.

On-Demand is a different model where you parse just what you need, directly into your own
data structure. The On-Demand approach, when well tuned, can provide superior performance.
[We refer you to the On-Demand documentation for further details](https://github.com/simdjson/simdjson/blob/master/doc/basics.md).

The Basics: Loading and Parsing JSON Documents using the DOM front-end
----------------------------------------------

The simdjson library offers a simple DOM tree API, which you can access by creating a
`dom::parser` and calling the `load()` method:

```cpp
dom::parser parser;
dom::element doc = parser.load(filename); // load and parse a file
```

Or by creating a padded string (for efficiency reasons, simdjson requires a string with
SIMDJSON_PADDING bytes at the end) and calling `parse()`:

```cpp
dom::parser parser;
dom::element doc = parser.parse("[1,2,3]"_padded); // parse a string, the _padded suffix creates a simdjson::padded_string instance
```

You can also load a `padded_string` from a file.


```cpp
auto json = padded_string::load("twitter.json"); // load JSON file 'twitter.json'.
dom::element doc = parser.parse(json);
```

(Windows users compiling with C++17 or better may use `wchar_t` strings to support non-ASCII
filenames: `padded_string::load(L"twitter.json")`.)


(Windows users compiling with C++17 or better may use `wchar_t` strings to support non-ASCII
filenames: `padded_string::load(L"twitter.json")`.)


You can copy your data directly on a `simdjson::padded_string` as follows:

```cpp
const char * data = "my data"; // 7 bytes
simdjson::padded_string my_padded_data(data, 7); // copies to a padded buffer
```

Or as follows...

```cpp
std::string data = "my data";
simdjson::padded_string my_padded_data(data); // copies to a padded buffer
```

You can then parse the JSON document from the `simdjson::padded_string` instance:

```cpp
simdjson::dom::parser parser;
simdjson::dom::element doc = parser.parse(my_padded_data);
```

Whenever you pass an `std::string` reference to `parser::parse`,
the parser will access the bytes beyond the end of
the string but before the end of the allocated memory (`std::string::capacity()`).
If you are using a sanitizer that checks for reading uninitialized bytes or `std::string`'s
container-overflow checks, you may encounter sanitizer warnings.
You can safely ignore these warnings. Or you can call `simdjson::pad(std::string&)` to pad the
string with `SIMDJSON_PADDING` spaces: this function returns a `simdjson::padding_string_view` which can be be passed to the parser's iterator function:

```cpp
std::string json = "[1]";
dom::element doc = parser.parse(simdjson::pad(json));
```

The parsed document resulting from the `parser.load` and `parser.parse` calls depends on the `parser` instance. Thus the `parser` instance must remain in scope. Furthermore, you must have at most one parsed document in play per `parser` instance.
You cannot copy a `parser` instance, you may only move it.

If you need to keep a document around long term, you can keep or move the parser instance. Note that moving a parser instance, or keeping one in a movable data structure like vector or map, can cause any outstanding `element`, `object` or `array` instances to be invalidated. The `element`, `object` or `array` instances are mere thin wrappers akin to an `std::vector<int>::iterator`: they are invalid when default constructed, they must be tied to a valid document instance. If you need to store a parser in a movable data structure, you should use a `std::unique_ptr` to avoid this invalidation(e.g., `std::unique_ptr<dom::parser> parser(new dom::parser{})`).

During the`load` or `parse` calls, neither the input file nor the input string are ever modified. After calling `load` or `parse`, the source (either a file or a string) can be safely discarded. All of the JSON data is stored in the `parser` instance.  The parsed document is also immutable in simdjson: you do not modify it by accessing it.

For best performance, a `parser` instance should be reused over several files: otherwise you will needlessly reallocate memory, an expensive process. It is also possible to avoid entirely memory allocations during parsing when using simdjson. [See our performance notes for details](performance.md).

If you need a lower-level interface, you may call the function `parser.parse(const char * p, size_t l)` on a pointer `p` while specifying the
length of your input `l` in bytes.

*Windows-specific*:  Windows users who need to read files with
non-ANSI characters in the name should set their code page to
UTF-8 (65001). This should be the default with Windows 11 and better.
Further, they may use the AreFileApisANSI function to determine whether
the filename is interpreted using the ANSI or the system default OEM
codepage, and they may call SetFileApisToOEM accordingly.

Using the Parsed JSON
---------------------

Once you have an element, you can navigate it with idiomatic C++ iterators, operators and casts.

* **Extracting Values (with exceptions):** You can cast a JSON element to a native type: `double(element)` or
  `double x = json_element`. This works for double, uint64_t, int64_t, bool,
  dom::object and dom::array. An exception (`simdjson::simdjson_error`) is thrown if the cast is not possible.
* **Extracting Values (without exceptions):** You can use a variant usage of `get()` with error codes to avoid exceptions. You first declare the variable of the appropriate type (`double`, `uint64_t`, `int64_t`, `bool`, `std::string_view`,
  `dom::object` and `dom::array`) and pass it by reference to `get()` which gives you back an error code: e.g.,
  ```cpp
  simdjson::error_code error;
  // _padded returns an simdjson::padded_string instance
  simdjson::padded_string numberstring = "1.2"_padded; // our JSON input ("1.2")
  simdjson::dom::parser parser;
  double value; // variable where we store the value to be parsed
  error = parser.parse(numberstring).get(value);
  if (error) { std::cerr << error << std::endl; return EXIT_FAILURE; }
  std::cout << "I parsed " << value << " from " << numberstring.data() << std::endl;
  ```
  The strings contain unescaped valid UTF-8 strings: no unmatched surrogate is allowed.
  Internally, numbers are stored as either 64-bit integers or 64-bit floating-point numbers.
  Thus it is possible to get the full 64-bit integer range (either signed or  unsigned).
  By default, the string `-0` is parsed as the integer 0 as in Python or C++. If you set the macro
  `SIMDJSON_MINUS_ZERO_AS_FLOAT` to `1` when building simdjson, you can get that `-0` is mapped to `-0.0`
  as in JavaScript. You can get the desired effect by building simdjson with cmake setting the
  `SIMDJSON_MINUS_ZERO_AS_FLOAT` to on: `cmake -B build -D SIMDJSON_MINUS_ZERO_AS_FLOAT=ON`.
* **Field Access:** To get the value of the "foo" field in an object, use `object["foo"]`.
* **Array Iteration:** To iterate through an array, use `for (auto value : array) { ... }`. If you
  know the type of the value, you can cast it right there, too! `for (double value : array) { ... }`
* **Object Iteration:** You can iterate through an object's fields, too: `for (auto [key, value] : object)`
* **Array Index:** To get at an array value by index, use the at() method: `array.at(0)` gets the
  first element. The at() method has linear-time complexity so it should not be used to iterate over the values of an array.
  > Note that array[0] does not compile, because implementing [] gives the impression indexing is a
  > O(1) operation, which it is not presently in simdjson. Instead, you should iterate over the elements
  > using a for-loop, as in our examples.
* **Array and Object size** Given an array or an object, you can get its size (number of elements or keys)
  with the `size()` method.
* **Checking an Element Type:** You can check an element's type with `element.type()`. It
  returns an `element_type` with values such as `simdjson::dom::element_type::ARRAY`, `simdjson::dom::element_type::OBJECT`, `simdjson::dom::element_type::INT64`,  `simdjson::dom::element_type::UINT64`,`simdjson::dom::element_type::DOUBLE`, `simdjson::dom::element_type::STRING`, `simdjson::dom::element_type::BOOL` or, `simdjson::dom::element_type::NULL_VALUE`.
* **Output to streams and strings:** Given a document or an element (or node) out of a JSON document, you can output a minified string version using the C++ stream idiom (`out << element`). You can also request the construction of a minified string version (`simdjson::minify(element)`) or a prettified string version (`simdjson::prettify(element)`). Numbers are serialized as 64-bit floating-point numbers (`double`).

### Examples

The following code illustrates all of the above:

```cpp
//  R"( ... )" is a C++ raw string literal.
auto cars_json = R"( [
  { "make": "Toyota", "model": "Camry",  "year": 2018, "tire_pressure": [ 40.1, 39.9, 37.7, 40.4 ] },
  { "make": "Kia",    "model": "Soul",   "year": 2012, "tire_pressure": [ 30.1, 31.0, 28.6, 28.7 ] },
  { "make": "Toyota", "model": "Tercel", "year": 1999, "tire_pressure": [ 29.8, 30.0, 30.2, 30.5 ] }
] )"_padded;
dom::parser parser;

// Iterating through an array of objects
for (dom::object car : parser.parse(cars_json)) {
  // Accessing a field by name
  cout << "Make/Model: " << car["make"] << "/" << car["model"] << endl;

  // Casting a JSON element to an integer
  uint64_t year = car["year"];
  cout << "- This car is " << 2020 - year << "years old." << endl;

  // Iterating through an array of floats
  double total_tire_pressure = 0;
  for (double tire_pressure : car["tire_pressure"]) {
    total_tire_pressure += tire_pressure;
  }
  cout << "- Average tire pressure: " << (total_tire_pressure / 4) << endl;

  // Writing out all the information about the car
  for (auto field : car) {
    cout << "- " << field.key << ": " << field.value << endl;
  }
}
```

Here is a different example illustrating the same ideas:

```cpp
auto abstract_json = R"( [
    {  "12345" : {"a":12.34, "b":56.78, "c": 9998877}   },
    {  "12545" : {"a":11.44, "b":12.78, "c": 11111111}  }
  ] )"_padded;
dom::parser parser;

// Parse and iterate through an array of objects
for (dom::object obj : parser.parse(abstract_json)) {
    for(const auto key_value : obj) {
      cout << "key: " << key_value.key << " : ";
      dom::object innerobj = key_value.value;
      cout << "a: " << double(innerobj["a"]) << ", ";
      cout << "b: " << double(innerobj["b"]) << ", ";
      cout << "c: " << int64_t(innerobj["c"]) << endl;
    }
}
```

And another one:


```cpp
  auto abstract_json = R"(
    {  "str" : { "123" : {"abc" : 3.14 } } } )"_padded;
  dom::parser parser;
  double v = parser.parse(abstract_json)["str"]["123"]["abc"];
  cout << "number: " << v << endl;
```


C++17 Support
-------------

While the simdjson library can be used in any project using C++ 11 and above, field iteration has special support C++ 17's destructuring syntax. For example:

```cpp
padded_string json = R"(  { "foo": 1, "bar": 2 }  )"_padded;
dom::parser parser;
dom::object object; // invalid until the get() succeeds
auto error = parser.parse(json).get(object);
if (error) { cerr << error << endl; return; }
for (auto [key, value] : object) {
  cout << key << " = " << value << endl;
}
```

For comparison, here is the C++ 11 version of the same code:

```cpp
// C++ 11 version for comparison
padded_string json = R"(  { "foo": 1, "bar": 2 }  )"_padded;
dom::parser parser;
dom::object object; // invalid until the get() succeeds
auto error = parser.parse(json).get(object);
if (error) { cerr << error << endl; return; }
for (dom::key_value_pair field : object) {
  cout << field.key << " = " << field.value << endl;
}
```

C++20 Support
------------

simdjson library also supports some C++20 feature including `std::ranges`:

```cpp
auto cars_json = R"( [
  { "make": "Toyota", "model": "Camry",  "year": 2018, "tire_pressure": [ 40.1, 39.9, 37.7, 40.4 ] },
  { "make": "Kia",    "model": "Soul",   "year": 2012, "tire_pressure": [ 30.1, 31.0, 28.6, 28.7 ] },
  { "make": "Toyota", "model": "Tercel", "year": 1999, "tire_pressure": [ 29.8, 30.0, 30.2, 30.5 ] }
] )"_padded;
dom::parser parser;
auto justmodel = [](auto car) { return car["model"]; };
for (auto car : parser.parse(cars_json).get_array() | std::views::transform(justmodel)) {
  std::cout << car << std::endl;
}
```

JSON Pointer
------------

The simdjson library also supports [JSON pointer](https://tools.ietf.org/html/rfc6901) through the
`at_pointer()` method, letting you reach further down into the document in a single call:

```cpp
auto cars_json = R"( [
  { "make": "Toyota", "model": "Camry",  "year": 2018, "tire_pressure": [ 40.1, 39.9, 37.7, 40.4 ] },
  { "make": "Kia",    "model": "Soul",   "year": 2012, "tire_pressure": [ 30.1, 31.0, 28.6, 28.7 ] },
  { "make": "Toyota", "model": "Tercel", "year": 1999, "tire_pressure": [ 29.8, 30.0, 30.2, 30.5 ] }
] )"_padded;
dom::parser parser;
dom::element cars = parser.parse(cars_json);
cout << cars.at_pointer("/0/tire_pressure/1") << endl; // Prints 39.9
```

A JSON Pointer expression is a sequence of segments each starting with the '/' character. Within arrays, an integer
index allows you to select the indexed node. Within objects, the string value of the key allows you to
select the value. If your keys contain the characters '/' or '~', they must be escaped as '~1' and
'~0' respectively. An empty JSON Pointer expression refers to the whole document.

We also extend the JSON Pointer support to include *relative* paths.
You can apply a JSON Pointer expression to any node and the path gets interpreted relatively, as if the current node were a whole JSON document.

Consider the following example:

```cpp
auto cars_json = R"( [
  { "make": "Toyota", "model": "Camry",  "year": 2018, "tire_pressure": [ 40.1, 39.9, 37.7, 40.4 ] },
  { "make": "Kia",    "model": "Soul",   "year": 2012, "tire_pressure": [ 30.1, 31.0, 28.6, 28.7 ] },
  { "make": "Toyota", "model": "Tercel", "year": 1999, "tire_pressure": [ 29.8, 30.0, 30.2, 30.5 ] }
] )"_padded;
dom::parser parser;
dom::element cars = parser.parse(cars_json);
cout << cars.at_pointer("/0/tire_pressure/1") << endl; // Prints 39.9
for (dom::element car_element : cars) {
    dom::object car; // invalid until the get() succeeds
    simdjson::error_code error;
    if ((error = car_element.get(car))) { std::cerr << error << std::endl; return; }
    double x = car.at_pointer("/tire_pressure/1");
    cout << x << endl; // Prints 39.9, 31 and 30
}
```

JSONPath
------------


The simdjson library supports a subset of [JSONPath](https://www.rfc-editor.org/rfc/rfc9535) (RFC 9535) through the `at_path()` method, allowing you to reach further into the document in a single call. The subset of JSONPath that is implemented is the subset that is trivially convertible into the JSON Pointer format, using `.` to access a field and `[]` to access a specific index.

Consider the following example:

```cpp
auto cars_json = R"( [
  { "make": "Toyota", "model": "Camry",  "year": 2018, "tire_pressure": [ 40.1, 39.9, 37.7, 40.4 ] },
  { "make": "Kia",    "model": "Soul",   "year": 2012, "tire_pressure": [ 30.1, 31.0, 28.6, 28.7 ] },
  { "make": "Toyota", "model": "Tercel", "year": 1999, "tire_pressure": [ 29.8, 30.0, 30.2, 30.5 ] }
] )"_padded;
dom::parser parser;
dom::element doc;
auto error = parser.parse(cars_json).get(doc);
if(error) { /*won't happen*/ }
double p;
error = doc.at_path("[0].tire_pressure[1]").get(p);
if(error) { /*won't happen*/ }
cout << p << endl; // Prints 39.9
```


We also support the `$` prefix. When you start a JSONPath expression with $, you are indicating that the path starts from the root of the JSON document. E.g.,

```cpp
auto json = R"( { "c" :{ "foo": { "a": [ 10, 20, 30 ] }}, "d": { "foo2": { "a": [ 10, 20, 30 ] }} , "e": 120 })"_padded;
dom::parser parser;
dom::element doc;
auto error = parser.parse(json).get(doc);
if(error) { /*won't happen*/ }
dom::object obj;
error = doc.get_object().get(obj);
if(error) { /*won't happen*/ }
int64_t x;
error = obj.at_path("$[3].foo.a[1]").get(x);
if(error) { /*won't happen*/ }
if(x != 20) { /*won't happen*/ }
x = obj.at_path("$.d.foo2.a.2");
if(error) { /*won't happen*/ }
```


## Using `at_path_with_wildcard` for JSONPath Queries

The `at_path_with_wildcard` function in simdjson extends the JSONPath querying capabilities by supporting wildcard expressions (`*`) in JSON paths. This allows users to retrieve multiple elements from a JSON document in a single query. For example, you can use `$.address.*` to fetch all fields within the `address` object or `$.phoneNumbers[*].numbers[*]` to retrieve all phone numbers across multiple objects in an array.

The `*` wildcard matches all elements at a specific level. For instance, `$.address.*` retrieves all key-value pairs in the `address` object, while `$.*.streetAddress` fetches all `streetAddress` fields across objects at the root level.  You can combine wildcards with array indexing. For example, `$.phoneNumbers[*].numbers[1]` retrieves the second number from each `numbers` array in the `phoneNumbers` array. If no elements match the wildcard query, the function returns an empty result. For instance, querying `$.empty_object.*` or `$.empty_array.*` will yield an empty set.

### Example Usage

Here is an example demonstrating the use of `at_path_with_wildcard`:

```cpp
simdjson::padded_string json_string = R"(
{
  "firstName": "John",
  "lastName": "doe",
  "age": 26,
  "address": {
    "streetAddress": "naist street",
    "city": "Nara",
    "postalCode": "630-0192"
  },
  "phoneNumbers": [
    {
      "type": "iPhone",
      "numbers": ["0123-4567-8888", "0123-4567-8788"]
    },
    {
      "type": "home",
      "numbers": ["0123-4567-8910"]
    }
  ]
})"_padded;

dom::parser parser;
dom::element parsed_json = parser.parse(json_string);
std::vector<dom::element> values;

// Fetch all fields in the address object
auto error = parsed_json.at_path_with_wildcard("$.address.*").get(values);
if(error) {
  // do something
}
for (auto &value : values) {
  std::string_view field;
  error = value.get(field);
  if(error) {
    // do something
  }
  std::cout << field << std::endl;
}

// Fetch all phone numbers
error = parsed_json.at_path_with_wildcard("$.phoneNumbers[*].numbers[*]").get(values);
if(error) {
  // do something
}
for (auto &value : values) {
  std::string_view number;
  error = value.get(number);
  if(error) {
    // do something
  }
  std::cout << number << std::endl;
}
```

This function is particularly useful for extracting data from complex JSON structures with nested arrays and objects. By leveraging wildcards, you can simplify your queries and reduce the need for multiple iterations.

Error Handling
--------------

All simdjson APIs that can fail return `simdjson_result<T>`, which is a &lt;value, error_code&gt;
pair. You can retrieve the value with .get(), like so:

```cpp
dom::element doc;
auto error = parser.parse(json).get(doc);
if (error) { cerr << error << endl; exit(1); }
```

When there is no error, the error code simdjson::SUCCESS is returned: it evaluates as false as a Boolean.
We have several error codes to indicate errors, they all evaluate to true as a Boolean: your software should not generally not depend on exact
error codes. We may change the error codes in future releases and the exact error codes could vary depending on your system.

When you use the code without exceptions, it is your responsibility to check for error before using the
result: if there is an error, the result value will not be valid and using it will caused undefined
behavior.

We can write a "quick start" example where we attempt to parse the following JSON file and access some data, without triggering exceptions:
```JavaScript
{
  "statuses": [
    {
      "id": 505874924095815700
    },
    {
      "id": 505874922023837700
    }
  ],
  "search_metadata": {
    "count": 100
  }
}
```

Our program loads the file, selects value corresponding to key "search_metadata" which expected to be an object, and then
it selects the key "count" within that object.

```cpp
#include <iostream>
#include "simdjson.h"

int main(void) {
  simdjson::dom::parser parser;
  simdjson::dom::element tweets; // invalid until the get() succeeds
  auto error = parser.load("twitter.json").get(tweets);
  if (error) { std::cerr << error << std::endl; return EXIT_FAILURE; }

  simdjson::dom::element res; // invalid until the get() succeeds
  if ((error = tweets["search_metadata"]["count"].get(res))) {
    std::cerr << "could not access keys" << std::endl;
    return EXIT_FAILURE;
  }
  std::cout << res << " results." << std::endl;
}
```

The following is a similar example where one wants to get the id of the first tweet without
triggering exceptions. To do this, we use `["statuses"].at(0)["id"]`. We break that expression down:

- Get the list of tweets (the `"statuses"` key of the document) using `["statuses"]`). The result is expected to be an array.
- Get the first tweet using `.at(0)`. The result is expected to be an object.
- Get the id of the tweet using ["id"]. We expect the value to be a non-negative integer.

Observe how we use the `at` method when querying an index into an array, and not the bracket operator.

```cpp
#include <iostream>
#include "simdjson.h"

int main(void) {
  simdjson::dom::parser parser;
  simdjson::dom::element tweets; // invalid until the get() succeeds
  auto error = parser.load("twitter.json").get(tweets);
  if (error) { std::cerr << error << std::endl; return EXIT_FAILURE; }
  uint64_t identifier;
  error = tweets["statuses"].at(0)["id"].get(identifier);
  if (error) { std::cerr << error << std::endl; return EXIT_FAILURE; }
  std::cout << identifier << std::endl;
  return EXIT_SUCCESS;
}
```

The `at()` method has linear-time complexity: it should not be used to iterate
over the content of an array.

### Error Handling Example

This is how the example in "Using the Parsed JSON" could be written using only error code checking:

```cpp
auto cars_json = R"( [
  { "make": "Toyota", "model": "Camry",  "year": 2018, "tire_pressure": [ 40.1, 39.9, 37.7, 40.4 ] },
  { "make": "Kia",    "model": "Soul",   "year": 2012, "tire_pressure": [ 30.1, 31.0, 28.6, 28.7 ] },
  { "make": "Toyota", "model": "Tercel", "year": 1999, "tire_pressure": [ 29.8, 30.0, 30.2, 30.5 ] }
] )"_padded;
dom::parser parser;
dom::array cars; // invalid until the get() succeeds
auto error = parser.parse(cars_json).get(cars);
if (error) { cerr << error << endl; exit(1); }

// Iterating through an array of objects
for (dom::element car_element : cars) {
    dom::object car;
    if ((error = car_element.get(car))) { cerr << error << endl; exit(1); }

    // Accessing a field by name
    std::string_view make, model;
    if ((error = car["make"].get(make))) { cerr << error << endl; exit(1); }
    if ((error = car["model"].get(model))) { cerr << error << endl; exit(1); }
    cout << "Make/Model: " << make << "/" << model << endl;

    // Casting a JSON element to an integer
    uint64_t year;
    if ((error = car["year"].get(year))) { cerr << error << endl; exit(1); }
    cout << "- This car is " << 2020 - year << "years old." << endl;

    // Iterating through an array of floats
    double total_tire_pressure = 0;
    dom::array tire_pressure_array;
    if ((error = car["tire_pressure"].get(tire_pressure_array))) { cerr << error << endl; exit(1); }
    for (dom::element tire_pressure_element : tire_pressure_array) {
        double tire_pressure;
        if ((error = tire_pressure_element.get(tire_pressure))) { cerr << error << endl; exit(1); }
        total_tire_pressure += tire_pressure;
    }
    cout << "- Average tire pressure: " << (total_tire_pressure / 4) << endl;

    // Writing out all the information about the car
    for (auto field : car) {
        cout << "- " << field.key << ": " << field.value << endl;
    }
}
```

Here is another example:

```cpp
auto abstract_json = R"( [
    {  "12345" : {"a":12.34, "b":56.78, "c": 9998877}   },
    {  "12545" : {"a":11.44, "b":12.78, "c": 11111111}  }
  ] )"_padded;
dom::parser parser;
dom::array array; // invalid until after the next line
auto error = parser.parse(abstract_json).get(array);
if (error) { cerr << error << endl; exit(1); }
// Iterate through an array of objects
for (dom::element elem : array) {
    dom::object obj;
    if ((error = elem.get(obj))) { cerr << error << endl; exit(1); }
    for (auto & key_value : obj) {
        cout << "key: " << key_value.key << " : ";
        dom::object innerobj;
        if ((error = key_value.value.get(innerobj))) { cerr << error << endl; exit(1); }

        double va, vb;
        if ((error = innerobj["a"].get(va))) { cerr << error << endl; exit(1); }
        cout << "a: " << va << ", ";
        if ((error = innerobj["b"].get(vc))) { cerr << error << endl; exit(1); }
        cout << "b: " << vb << ", ";

        int64_t vc;
        if ((error = innerobj["c"].get(vc))) { cerr << error << endl; exit(1); }
        cout << "c: " << vc << endl;
    }
}
```

And another one:

```cpp
  auto abstract_json = R"(
    {  "str" : { "123" : {"abc" : 3.14 } } } )"_padded;
  dom::parser parser;
  double v;
  auto error = parser.parse(abstract_json)["str"]["123"]["abc"].get(v);
  if (error) { cerr << error << endl; exit(1); }
  cout << "number: " << v << endl;
```

Notice how we can string several operations (`parser.parse(abstract_json)["str"]["123"]["abc"].get(v)`) and only check for the error once, a strategy we call  *error chaining*.

The next two functions will take as input a JSON document containing an array with a single element, either a string or a number. They return true upon success.

```cpp
simdjson::dom::parser parser{};

bool parse_double(const char *j, double &d) {
  auto error = parser.parse(j, std::strlen(j))
        .at(0)
        .get(d, error);
  if (error) { return false; }
  return true;
}

bool parse_string(const char *j, std::string &s) {
  std::string_view answer;
  auto error = parser.parse(j, strlen(j))
        .at(0)
        .get(answer, error);
  if (error) { return false; }
  s.assign(answer.data(), answer.size());
  return true;
}
```

To ensure you don't write any code that uses exceptions, compile with `SIMDJSON_EXCEPTIONS=OFF`. For example, if including the project via cmake:

```cmake
target_compile_definitions(simdjson PUBLIC SIMDJSON_EXCEPTIONS=OFF)
```

### Exceptions

Users more comfortable with an exception flow may choose to directly cast the `simdjson_result<T>` to the desired type:

```cpp
dom::element doc = parser.parse(json); // Throws an exception if there was an error!
```

When used this way, a `simdjson_error` exception will be thrown if an error occurs, preventing the
program from continuing if there was an error.


If one is willing to trigger exceptions, it is possible to write simpler code:

```cpp
#include <iostream>
#include "simdjson.h"

int main(void) {
  simdjson::dom::parser parser;
  simdjson::dom::element tweets = parser.load("twitter.json");
  std::cout << "ID: " << tweets["statuses"].at(0)["id"] << std::endl;
  return EXIT_SUCCESS;
}
```


Tree Walking and JSON Element Types
-----------------------------------

Sometimes you don't necessarily have a document with a known type, and are trying to generically
inspect or walk over JSON elements. To do that, you can use iterators and the type() method. For
example, here's a quick and dirty recursive function that verbosely prints the JSON document as JSON
(* ignoring nuances like trailing commas and escaping strings, for brevity's sake):

```cpp
void print_json(dom::element element) {
  switch (element.type()) {
    case dom::element_type::ARRAY:
      cout << "[";
      for (dom::element child : dom::array(element)) {
        print_json(child);
        cout << ",";
      }
      cout << "]";
      break;
    case dom::element_type::OBJECT:
      cout << "{";
      for (dom::key_value_pair field : dom::object(element)) {
        cout << "\"" << field.key << "\": ";
        print_json(field.value);
      }
      cout << "}";
      break;
    case dom::element_type::INT64:
      cout << int64_t(element) << endl;
      break;
    case dom::element_type::UINT64:
      cout << uint64_t(element) << endl;
      break;
    case dom::element_type::DOUBLE:
      cout << double(element) << endl;
      break;
    case dom::element_type::STRING:
      cout << std::string_view(element) << endl;
      break;
    case dom::element_type::BOOL:
      cout << bool(element) << endl;
      break;
    case dom::element_type::NULL_VALUE:
      cout << "null" << endl;
      break;
  }
}

void basics_treewalk_1() {
  dom::parser parser;
  print_json(parser.load("twitter.json"));
}
```



Reusing the parser for maximum efficiency
-----------------------------------------

If you're using simdjson to parse multiple documents, or in a loop, you should make a parser once
and reuse it. The simdjson library will allocate and retain internal buffers between parses, keeping
buffers hot in cache and keeping memory allocation and initialization to a minimum. In this manner,
you can parse terabytes of JSON data without doing any new allocation.

```cpp
dom::parser parser;

// This initializes buffers and a document big enough to handle this JSON.
dom::element doc = parser.parse("[ true, false ]"_padded);
cout << doc << endl;

// This reuses the existing buffers, and reuses and *overwrites* the old document
doc = parser.parse("[1, 2, 3]"_padded);
cout << doc << endl;

// This also reuses the existing buffers, and reuses and *overwrites* the old document
dom::element doc2 = parser.parse("true"_padded);
// Even if you keep the old reference around, doc and doc2 refer to the same document.
cout << doc << endl;
cout << doc2 << endl;
```

It's not just internal buffers though. The simdjson library reuses the document itself. The dom::element, dom::object and dom::array instances are *references* to the internal document.
You are only *borrowing* the document from simdjson, which purposely reuses and overwrites it each
time you call parse. This prevent wasteful and unnecessary memory allocation in 99% of cases where
JSON is just read, used, and converted to native values or thrown away.

> **You are only borrowing the document from the simdjson parser. Don't keep it long term!**

This is key: don't keep the `document&`, `dom::element`, `dom::array`, `dom::object`
or `string_view` objects you get back from the API. Convert them to C++ native values, structs and
arrays that you own.

Server Loops: Long-Running Processes and Memory Capacity
--------------------------------------------------------

The simdjson library automatically expands its memory capacity when larger documents are parsed, so
that you don't unexpectedly fail. In a short process that reads a bunch of files and then exits,
this works pretty flawlessly.

Server loops, though, are long-running processes that will keep the parser around forever. This
means that if you encounter a really, really large document, simdjson will not resize back down.
The simdjson library lets you adjust your allocation strategy to prevent your server from growing
without bound:

* You can set a *max capacity* when constructing a parser:

  ```cpp
  dom::parser parser(1000*1000); // Never grow past documents > 1MB
  for (web_request request : listen()) {
    dom::element doc;
    auto error = parser.parse(request.body).get(doc);
    // If the document was above our limit, emit 413 = payload too large
    if (error == CAPACITY) { request.respond(413); continue; }
    // ...
  }
  ```

  This parser will grow normally as it encounters larger documents, but will never pass 1MB.

* You can set a *fixed capacity* that never grows, as well, which can be excellent for
  predictability and reliability, since simdjson will never call malloc after startup!

  ```cpp
  dom::parser parser(0); // This parser will refuse to automatically grow capacity
  auto error = parser.allocate(1000*1000); // This allocates enough capacity to handle documents <= 1MB
  if (error) { cerr << error << endl; exit(1); }

  for (web_request request : listen()) {
    dom::element doc;
    error = parser.parse(request.body).get(doc);
    // If the document was above our limit, emit 413 = payload too large
    if (error == CAPACITY) { request.respond(413); continue; }
    // ...
  }
  ```


Best Use of the DOM API
-------------------------

The simdjson API provides access to the JSON DOM (document-object-model) content as a tree of `dom::element` instances, each representing an object, an array or an atomic type (null, true, false, number). These `dom::element` instances are lightweight objects (e.g., spanning 16 bytes) and it might be advantageous to pass them by value, as opposed to passing them by reference or by pointer.

Padding and Temporary Copies
--------------

The simdjson function `parser.parse` reads data from a padded  buffer, containing SIMDJSON_PADDING extra bytes added at the end.
If you are passing a `padded_string` to `parser.parse` or loading the JSON directly from
disk (`parser.load`), padding is automatically  handled.
When calling `parser.parse` on a pointer (e.g., `parser.parse(my_char_pointer, my_length_in_bytes)`) a temporary copy  is made by default with adequate padding and you, again, do not need to be concerned with padding.

Some users may not be able use our `padded_string` class or to load the data directly from disk (`parser.load`). They may need to pass data pointers to the library.  If these users wish to avoid temporary copies and corresponding temporary memory allocations, they may want to call `parser.parse` with the `realloc_if_needed` parameter set to false (e.g., `parser.parse(my_char_pointer, my_length_in_bytes, false)`). In such cases, they need to ensure that there are at least SIMDJSON_PADDING extra bytes at the end that can be safely accessed and read. They do not need to initialize the padded bytes to any value in particular. The following example is safe:


```cpp
const char *json      = R"({"key":"value"})";
const size_t json_len = std::strlen(json);
std::unique_ptr<char[]> padded_json_copy{new char[json_len + SIMDJSON_PADDING]};
memcpy(padded_json_copy.get(), json, json_len);
memset(padded_json_copy.get() + json_len, 0, SIMDJSON_PADDING);
simdjson::dom::parser parser;
simdjson::dom::element element = parser.parse(padded_json_copy.get(), json_len, false);
```

Setting the `realloc_if_needed` parameter `false` in this manner may lead to better performance since copies are avoided, but it requires that the user takes more responsibilities: the simdjson library cannot verify that the input buffer was padded with SIMDJSON_PADDING extra bytes.

Performance Tips
---------------------

- For release builds, we recommend setting `NDEBUG` pre-processor directive when compiling the `simdjson` library. Importantly, using the optimization flags `-O2` or `-O3` under GCC and LLVM clang does not set the `NDEBUG` directive, you must set it manually (e.g., `-DNDEBUG`).
- For long streams of JSON documents, consider [`iterate_many`](iterate_many.md) and [`parse_many`](parse_many.md) for better performance.