File: atomic_base64.cpp

package info (click to toggle)
simdutf 7.7.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,244 kB
  • sloc: cpp: 60,074; ansic: 14,226; python: 3,364; sh: 321; makefile: 12
file content (448 lines) | stat: -rw-r--r-- 15,759 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
#include <chrono>
#include <cstddef>
#include <cstdint>
#include <array>
#include <format>
#include <iomanip>
#include <iostream>
#include <variant>

#include "helpers/common.h"
#include "simdutf.h"

constexpr std::array options = {
    simdutf::base64_default,
    simdutf::base64_url,
    simdutf::base64_default_no_padding,
    simdutf::base64_url_with_padding,
};

constexpr std::array last_chunk = {
    simdutf::last_chunk_handling_options::loose,
    simdutf::last_chunk_handling_options::strict,
    simdutf::last_chunk_handling_options::stop_before_partial};

struct decode_result {
  std::vector<char> binary;
  simdutf::result result;
};

template <typename T> std::string get_code(T c) {
  static_assert(std::is_same_v<T, char> || std::is_same_v<T, char16_t>,
                "T must be char or char16_t");

  using output_type =
      std::conditional_t<std::is_same_v<T, char>, uint8_t, uint16_t>;
  auto value = static_cast<output_type>(c);
  if (c == '\n') {
    return "'\\n'";
  } else if (c == '\r') {
    return "'\\r'";
  } else if (c == '\t') {
    return "'\\t'";
  } else if (c == '\f') {
    return "'\\f'";
  } else if (c == '\\') {
    return "'\\\\'";
  } else if (value >= 32 && value <= 126) { // Printable ASCII range
    return "'" + std::string(1, static_cast<char>(value)) + "'";
  } else {
    std::ostringstream oss;
    oss << "'" << (std::is_same_v<T, char> ? "\\x" : "\\u") << std::hex
        << std::setw(std::is_same_v<T, char> ? 2 : 4) << std::setfill('0')
        << static_cast<unsigned>(value) << "'";
    return oss.str();
  }
}
std::string get_test_name() {
  auto now = std::chrono::system_clock::now();
  return std::format("TEST(issue_{:%Y%m%d%H%M}) {{\n", now);
}

/*
 * decodes the base64 coded input
 */
template <typename FromChar, bool atomic>
decode_result
decode_impl(std::span<const FromChar> base64_, const auto selected_option,
            const std::size_t decode_buf_size, const auto last_chunk_option,
            const bool decode_up_to_bad_char) {
  std::vector<FromChar> base64(begin(base64_), end(base64_));
  std::size_t outlen = decode_buf_size;

  decode_result ret;
  ret.binary.resize(decode_buf_size);
  if constexpr (atomic) {
    ret.result = simdutf::atomic_base64_to_binary_safe(
        base64.data(), base64.size(), ret.binary.data(), outlen,
        selected_option, last_chunk_option, decode_up_to_bad_char);
  } else {
    ret.result = simdutf::base64_to_binary_safe(
        base64.data(), base64.size(), ret.binary.data(), outlen,
        selected_option, last_chunk_option, decode_up_to_bad_char);
  }

  // the number of written bytes must always be less than the supplied buffer
  assert(outlen <= decode_buf_size);

  switch (ret.result.error) {
  case simdutf::error_code::OUTPUT_BUFFER_TOO_SMALL: {
    if (!(ret.result.count <= base64.size())) {
      std::cerr << " decode_buf_size=" << decode_buf_size
                << " outlen=" << outlen << " and result=" << ret.result << '\n';
      std::abort();
    }
  } break;
  case simdutf::error_code::INVALID_BASE64_CHARACTER: {
    assert(ret.result.count < base64.size());
  } break;
  case simdutf::error_code::BASE64_INPUT_REMAINDER: {
    if (!(ret.result.count <= base64.size())) {
      std::cerr << "on input with size=" << base64.size()
                << ": got BASE64_INPUT_REMAINDER decode_buf_size="
                << decode_buf_size << " outlen=" << outlen
                << " and result=" << ret.result << '\n';
      std::abort();
    }
  } break;
  default:;
  }

  // strip away the part that was not written to (this is a temporary workaround
  // to not stop the fuzzing when base64_to_binary_safe writes outside what it
  // reports in outlen)
  ret.binary.resize(outlen);

  return ret;
}

[[nodiscard]] std::uint64_t compute_hash(const auto& data) noexcept {
  constexpr std::uint64_t fnv_prime = 1099511628211ULL;
  constexpr std::uint64_t fnv_offset = 14695981039346656037ULL;

  std::uint64_t hash = fnv_offset;
  for (const auto& item : data) {
    hash ^= static_cast<std::uint64_t>(item);
    hash *= fnv_prime;
  }
  return hash;
}

// For debugging purposes, we want to see a careful comparison of the
// output of the two implementations.
bool compare_decode_verbose(
    const auto& b64_input, const std::size_t decodesize,
    const simdutf::base64_options options,
    const simdutf::last_chunk_handling_options last_chunk_options,
    const bool decode_up_to_bad_char) {
  std::cerr << "// input size: " << b64_input.size() << "\n";
  std::cerr << "// decode buffer size: " << decodesize << "\n";
  std::cerr << "// options: " << options << "\n";
  std::cerr << "// last chunk options: " << last_chunk_options << "\n";
  std::cerr << "// decode up to bad char: " << decode_up_to_bad_char << "\n";
  std::cerr << "// hash: " << compute_hash(b64_input) << "\n";
  std::cerr << "// implementation tested: "
            << simdutf::get_active_implementation()->name() << "\n";
  std::cerr << "// ";
  for (std::size_t i = 0; i < b64_input.size(); ++i) {
    std::cerr << uint64_t(b64_input[i]) << ", ";
    if ((i + 1) % 16 == 0) {
      std::cerr << "\n";
      std::cerr << "// ";
    }
  }
  std::cerr << "\n";

  const auto s = [&]() {
    if constexpr (sizeof(b64_input[0]) == 1) {
      return std::span<const char>(
          reinterpret_cast<const char*>(b64_input.data()), b64_input.size());
    } else {
      return std::span<const char16_t>(
          reinterpret_cast<const char16_t*>(b64_input.data()),
          b64_input.size());
    }
  }();

  {
    // We are going to compute the 'true' answer.
    std::vector<char> largebuffer(s.size());
    simdutf::full_result tr =
        simdutf::get_active_implementation()->base64_to_binary_details(
            s.data(), s.size(), largebuffer.data(), options,
            last_chunk_options);
    std::cerr << "// 'correct' output " << tr.output_count << " bytes\n";
    std::cerr << "// 'correct' consumes " << tr.input_count << " characters\n";
    std::cerr << "// 'correct' has error " << tr.error << "\n";
  }

  std::vector<char> outbuf1(decodesize);
  std::size_t outlen1 = outbuf1.size();
  const auto r1 = simdutf::base64_to_binary_safe(
      s.data(), s.size(), outbuf1.data(), outlen1, options, last_chunk_options,
      decode_up_to_bad_char);
  // Check that the output is zeroed out
  for (std::size_t i = outlen1; i < decodesize; ++i) {
    if (uint8_t(outbuf1.at(i)) != 0) {
      return false;
    }
  }
  std::cerr << "// regular safe produces " << outlen1 << " bytes\n";
  std::cerr << "// regular safe consumes " << r1.count << " characters\n";
  std::cerr << "// regular has error " << r1.error << "\n";
  if (r1.error == simdutf::error_code::INVALID_BASE64_CHARACTER) {
    std::cerr << "// regular has error INVALID_BASE64_CHARACTER\n";
    if (r1.count < s.size()) {
      std::cerr << "// at chararacter " << get_code(s[r1.count]) << "\n";
    }
  }
  if (r1.error == simdutf::error_code::BASE64_INPUT_REMAINDER) {
    std::cerr << "// regular has error BASE64_INPUT_REMAINDER\n";
  }
  if (r1.error == simdutf::error_code::OUTPUT_BUFFER_TOO_SMALL) {
    std::cerr << "// regular has error OUTPUT_BUFFER_TOO_SMALL\n";
  }
  if (r1.error == simdutf::error_code::SUCCESS) {
    std::cerr << "// regular has error SUCCESS\n";
  }
  std::vector<char> outbuf2(decodesize);
  const auto [r2, outlen2] = simdutf::atomic_base64_to_binary_safe(
      s, outbuf2, options, last_chunk_options, decode_up_to_bad_char);
  for (std::size_t i = outlen2; i < decodesize; ++i) {
    if (uint8_t(outbuf2.at(i)) != 0) {
      return false;
    }
  }
  std::cerr << "// atomic produces " << outlen2 << " bytes\n";
  std::cerr << "// atomic consumes " << r2.count << " characters\n";
  std::cerr << "// atomic has error " << r2.error << "\n";
  if (r2.error == simdutf::error_code::INVALID_BASE64_CHARACTER) {
    std::cerr << "// atomic has error INVALID_BASE64_CHARACTER\n";
    if (r2.count < s.size()) {
      std::cerr << "// at chararacter " << get_code(s[r2.count]) << "\n";
    }
  }
  if (r2.error == simdutf::error_code::BASE64_INPUT_REMAINDER) {
    std::cerr << "// atomic has error BASE64_INPUT_REMAINDER\n";
  }
  if (r2.error == simdutf::error_code::OUTPUT_BUFFER_TOO_SMALL) {
    std::cerr << "// atomic has error OUTPUT_BUFFER_TOO_SMALL\n";
  }
  if (r2.error == simdutf::error_code::SUCCESS) {
    std::cerr << "// atomic has error SUCCESS\n";
  }

  // Both must agree on the kind of error
  if (decode_up_to_bad_char) {
    if (r1.error != r2.error) {
      return false;
    }
  } else {
    if ((r1.error == simdutf::error_code::SUCCESS) !=
        (r2.error == simdutf::error_code::SUCCESS)) {
      return false;
    }
  }

  // On success, must agree on the output
  if (r1.error == simdutf::error_code::SUCCESS) {
    if (outlen1 != outlen2 || r1.count != r2.count) {
      return false;
    }
    for (std::size_t i = 0; i < outlen1; ++i) {
      if (+outbuf1.at(i) != +outbuf2.at(i)) {
        return false;
      }
    }
    // Ensure remainder of the output is equal
    for (std::size_t i = outlen1; i < decodesize; ++i) {
      if (+outbuf1.at(i) != +outbuf2.at(i)) {
        return false;
      }
    }
  }
  return true;
}

template <typename FromChar>
void decode(std::span<const FromChar> base64_, const auto selected_option,
            const std::size_t decode_buf_size, const auto last_chunk_option,
            const bool decode_up_to_bad_char) {

  const auto atomic =
      decode_impl<FromChar, true>(base64_, selected_option, decode_buf_size,
                                  last_chunk_option, decode_up_to_bad_char);
  const auto non_atomic =
      decode_impl<FromChar, false>(base64_, selected_option, decode_buf_size,
                                   last_chunk_option, decode_up_to_bad_char);

  bool bad = false;
  // When decode_up_to_bad_char is true, the error code should be consistent
  if (decode_up_to_bad_char) {
    if (atomic.result.error != non_atomic.result.error) {
      std::cerr << "different error reported! " << atomic.result.error << " vs "
                << non_atomic.result.error << '\n';
      bad = true;
    }
  } else {
    // When decode_up_to_bad_char is false, they either both succeed or
    // both fail, although the error codes may differ.
    if ((atomic.result.error == simdutf::SUCCESS) !=
        (non_atomic.result.error == simdutf::SUCCESS)) {
      std::cerr << "different error reported! " << atomic.result.error << " vs "
                << non_atomic.result.error << '\n';
      bad = true;
    }
  }
  // When they both succeed, the count should be the same.
  if ((atomic.result.error == simdutf::SUCCESS) &&
      (non_atomic.result.error == simdutf::SUCCESS)) {
    if (atomic.result.count != non_atomic.result.count) {
      std::cerr << "different count reported! " << atomic.result.count << " vs "
                << non_atomic.result.count << '\n';
      bad = true;
    } else if (atomic.binary.size() != non_atomic.binary.size()) {
      if (non_atomic.result.error == simdutf::SUCCESS) {
        // suppress this output, it happens all the time otherwise
        std::cerr << "different data size! " << atomic.binary.size() << " vs "
                  << non_atomic.binary.size() << '\n';
        bad = true;
      }
    } else if (atomic.binary != non_atomic.binary) {
      std::cerr << "different data content! (but same size)\n";
      for (std::size_t i = 0; i < non_atomic.binary.size(); ++i) {
        const auto e1 = non_atomic.binary.at(i);
        const auto e2 = atomic.binary.at(i);
        if (e1 != e2) {
          std::cerr << "non_atomic[" << i << "]=" << +e1 << " != atomic[" << i
                    << "]=" << +e2 << "\n";
        }
        ++i;
      }
      bad = true;
    }
  }

  if (!bad) {
    return;
  }

  std::cerr << get_test_name();
  bool is_ok = compare_decode_verbose(base64_, decode_buf_size, selected_option,
                                      last_chunk_option, decode_up_to_bad_char);
  std::cerr << "// implementation tested: "
            << simdutf::get_active_implementation()->name() << "\n";
  if (is_ok) {
    std::cerr << "// MIGHT NOT BE A FAILURE?????\n";
  } else {
    std::cerr << "// FAILURE VERIFIED\n";
  }
  constexpr bool is_one_byte = (sizeof(FromChar) == 1);
  if (is_one_byte) {
    std::cerr << "// input is char\n";
  } else {
    std::cerr << "// input is char16_t\n";
  }
  if constexpr (is_one_byte) {

    std::cerr << "// input:\n";
    std::cerr << "// ";
    size_t count = 0;

    for (auto b : base64_) {
      count++;
      if (count % 128 == 0) {
        std::cerr << "\n// ";
      }
      if (b >= 0x20 && b < 0x7f) {
        std::cerr << static_cast<char>(b);
      } else if (b == '\n' || b == '\r' || b == '\t' || b == '\f' || b == ' ') {
        std::cerr << " ";
      } else {
        std::cerr << "!";
      }
    }
    std::cerr << "\n";
    std::cerr << "// count=" << count << "\n";
  }

  std::cerr << "const std::vector<" << (is_one_byte ? "char" : "char16_t")
            << "> base64{";
  for (auto b : base64_) {
    std::cerr << get_code(b) << ", ";
  }
  std::cerr << "};\n";
  std::cerr << "compare_decode(base64, " << std::dec << decode_buf_size
            << ", simdutf::" << NAMEOF_ENUM(selected_option) << ",\n";
  std::cerr << "simdutf::last_chunk_handling_options::"
            << NAMEOF_ENUM(last_chunk_option) << ", "
            << (decode_up_to_bad_char ? "true" : "false") << ");\n";

  std::cerr << "ASSERT_TRUE(compare_decode_verbose(base64, " << std::dec
            << decode_buf_size << ", simdutf::" << NAMEOF_ENUM(selected_option)
            << ",\n";
  std::cerr << "simdutf::last_chunk_handling_options::"
            << NAMEOF_ENUM(last_chunk_option) << ", "
            << (decode_up_to_bad_char ? "true" : "false") << "));\n";
  std::cerr << "};\n";
  // std::abort();
}

extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
  // pick one of the function pointers, based on the fuzz data
  // the first byte is which action to take. step forward
  // several bytes so the input is aligned.
  constexpr auto optionbytes = 6u;
  static_assert(optionbytes % 2 == 0,
                "optionbytes must be even to avoid misaligned char16 pointers");

  if (size < optionbytes) {
    return 0;
  }
  constexpr auto Ncases = 2u;
  constexpr auto actionmask = std::bit_ceil(Ncases) - 1;
  const auto action = data[0] & actionmask;

  // pick a random option
  const auto selected_option = [](auto index) {
    if (index >= options.size())
      return options[0];
    else {
      return options[index];
    }
  }(data[1] & (std::bit_ceil(options.size()) - 1));
  const auto selected_last_chunk =
      (selected_option == simdutf::base64_url ||
       selected_option == simdutf::base64_default_no_padding)
          ? simdutf::last_chunk_handling_options::loose
          : [](auto index) {
              if (index >= last_chunk.size())
                return last_chunk[0];
              else {
                return last_chunk[index];
              }
            }(data[2] & (std::bit_ceil(last_chunk.size()) - 1));

  // decode buffer size
  const std::size_t decode_buffer_size = (data[4] << 8) + data[3];

  const bool decode_up_to_bad_char = data[5] & 0x1;

  data += optionbytes;
  size -= optionbytes;

  switch (action) {
  case 0: {
    const std::span<const char> chardata{(const char*)data, size};
    decode(chardata, selected_option, decode_buffer_size, selected_last_chunk,
           decode_up_to_bad_char);
  } break;
  case 1: {
    const std::span<const char16_t> chardata{(const char16_t*)data, size / 2};
    decode(chardata, selected_option, decode_buffer_size, selected_last_chunk,
           decode_up_to_bad_char);
  } break;
  }

  return 0;
}