1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
#include <cstddef>
#include <cstdint>
#include <array>
#include "helpers/common.h"
#include "simdutf.h"
constexpr std::array options = {
simdutf::base64_default,
simdutf::base64_url,
simdutf::base64_default_no_padding,
simdutf::base64_url_with_padding,
};
constexpr std::array last_chunk = {
simdutf::last_chunk_handling_options::loose,
simdutf::last_chunk_handling_options::strict,
simdutf::last_chunk_handling_options::stop_before_partial};
struct decoderesult {
std::size_t maxbinarylength{};
simdutf::result convertresult{};
auto operator<=>(const decoderesult&) const = default;
};
template <typename FromChar>
void decode(std::span<const FromChar> base64_, const auto selected_option,
const auto last_chunk_option) {
std::vector<FromChar> base64(begin(base64_), end(base64_));
const auto implementations = get_supported_implementations();
std::vector<decoderesult> results;
results.reserve(implementations.size());
for (auto impl : implementations) {
auto& r = results.emplace_back();
r.maxbinarylength =
impl->maximal_binary_length_from_base64(base64.data(), base64.size());
std::vector<char> output(r.maxbinarylength);
r.convertresult =
impl->base64_to_binary(base64.data(), base64.size(), output.data(),
selected_option, last_chunk_option);
}
auto neq = [](const auto& a, const auto& b) { return a != b; };
if (std::ranges::adjacent_find(results, neq) != results.end()) {
std::cerr << "output differs between implementations for decode\n";
const auto implementations = get_supported_implementations();
std::size_t i = 0;
for (const auto& r : results) {
std::cerr << "impl " << implementations[i]->name()
<< " got maxbinarylength=" << r.maxbinarylength
<< " convertresult=" << r.convertresult << "\n";
++i;
}
std::cerr << "option: " << selected_option << '\n';
std::cerr << "data: "
<< (std::is_same_v<FromChar, char> ? "char" : "char16_t") << "{";
for (int v : base64) {
std::cerr << v << ", ";
}
std::cerr << "}\n";
std::abort();
}
}
template <typename FromChar>
void decode_safe(std::span<const FromChar> base64_, const auto selected_option,
const std::size_t decode_buf_size,
const auto last_chunk_option) {
std::vector<FromChar> base64(begin(base64_), end(base64_));
std::vector<char> output(decode_buf_size);
std::size_t outlen = decode_buf_size;
const auto convertresult = simdutf::base64_to_binary_safe(
base64.data(), base64.size(), output.data(), outlen, selected_option,
last_chunk_option);
// the number of written bytes must always be less than the supplied buffer
assert(outlen <= decode_buf_size);
switch (convertresult.error) {
case simdutf::error_code::OUTPUT_BUFFER_TOO_SMALL: {
if (!(convertresult.count <= base64.size())) {
std::cerr << " decode_buf_size=" << decode_buf_size
<< " outlen=" << outlen << " and result=" << convertresult
<< '\n';
std::abort();
}
} break;
case simdutf::error_code::INVALID_BASE64_CHARACTER: {
assert(convertresult.count < base64.size());
} break;
case simdutf::error_code::BASE64_INPUT_REMAINDER: {
if (!(convertresult.count <= base64.size())) {
std::cerr << "on input with size=" << base64.size()
<< ": got BASE64_INPUT_REMAINDER decode_buf_size="
<< decode_buf_size << " outlen=" << outlen
<< " and result=" << convertresult << '\n';
std::abort();
}
} break;
case simdutf::error_code::SUCCESS: {
// possibility to compare with the normal function
} break;
default:;
}
}
struct roundtripresult {
std::size_t length{};
std::size_t maxbinarylength{};
std::string outputhash;
std::size_t written{};
simdutf::result convertbackresult{};
auto operator<=>(const roundtripresult&) const = default;
};
/// verifies that base64 with lines is the same as without lines, but with
/// newlines every line_length:th byte
void verify_lines(std::span<const char> without_lines,
std::span<const char> with_lines,
const std::size_t line_length) {
// ensure we get the same as output, with a newline every line_length:th
// byte
for (std::size_t i = 0, j = 0;;) {
// check one line
for (int count = 0; count < line_length && j < with_lines.size(); ++count) {
if (without_lines[i++] != with_lines[j++]) {
// unexpected - different content
std::abort();
}
}
if (j == with_lines.size()) {
// we are at the end of with_lines
if (i != without_lines.size()) {
// unexpected - we are not at the end of without_lines
std::abort();
}
break;
}
if (with_lines[j++] != '\n') {
// unexpected - not a newline
std::abort();
}
}
}
void roundtrip(std::span<const char> binary, const auto selected_option,
const auto last_chunk_option, const std::size_t line_length) {
if (last_chunk_option ==
simdutf::last_chunk_handling_options::stop_before_partial) {
return; // this is not a valid option for roundtrip
}
const auto inputhash = FNV1A_hash::as_str(binary);
const auto implementations = get_supported_implementations();
std::vector<roundtripresult> results;
results.reserve(implementations.size());
for (auto impl : implementations) {
auto& r = results.emplace_back();
r.length = impl->base64_length_from_binary(binary.size(), selected_option);
std::vector<char> output(r.length);
r.written = impl->binary_to_base64(binary.data(), binary.size(),
output.data(), selected_option);
if (r.length != r.written) {
std::abort();
}
// make sure generating base64 with lines gives the expected result
const auto length_with_lines =
simdutf::base64_length_from_binary_with_lines(
binary.size(), selected_option, line_length);
assert(length_with_lines >= r.length);
std::string output_with_lines(length_with_lines, '\0');
const auto nwritten_with_lines = impl->binary_to_base64_with_lines(
binary.data(), binary.size(), output_with_lines.data(), line_length,
selected_option);
if (nwritten_with_lines != length_with_lines) {
std::cerr << nwritten_with_lines << "!=" << length_with_lines << '\n';
std::abort();
}
verify_lines(output, output_with_lines, line_length);
r.outputhash = FNV1A_hash::as_str(output);
// convert back to binary
r.maxbinarylength =
impl->maximal_binary_length_from_base64(output.data(), output.size());
std::vector<char> restored(r.maxbinarylength);
r.convertbackresult =
impl->base64_to_binary(output.data(), output.size(), restored.data(),
selected_option, last_chunk_option);
if (const auto restoredhash = FNV1A_hash::as_str(restored);
inputhash != restoredhash) {
std::abort();
}
if (restored.size() != binary.size()) {
std::abort();
}
}
auto neq = [](const auto& a, const auto& b) { return a != b; };
if (std::ranges::adjacent_find(results, neq) != results.end()) {
std::cerr << "output differs between implementations\n";
for (const auto& r : results) {
std::cout << "written=" << r.written << " maxlength=" << r.maxbinarylength
<< " length=" << r.length << '\n';
}
std::abort();
}
}
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
// pick one of the function pointers, based on the fuzz data
// the first byte is which action to take. step forward
// several bytes so the input is aligned.
constexpr auto optionbytes = 6u;
static_assert(optionbytes % 2 == 0,
"optionbytes must be even to avoid misaligned char16 pointers");
if (size < optionbytes) {
return 0;
}
constexpr auto Ncases = 5u;
constexpr auto actionmask = std::bit_ceil(Ncases) - 1;
const auto action = data[0] & actionmask;
// pick a random option
const auto selected_option = [](auto index) {
if (index >= options.size())
return options[0];
else {
return options[index];
}
}(data[1] & (std::bit_ceil(options.size()) - 1));
const auto selected_last_chunk =
(selected_option == simdutf::base64_url ||
selected_option == simdutf::base64_default_no_padding)
? simdutf::last_chunk_handling_options::loose
: [](auto index) {
if (index >= last_chunk.size())
return last_chunk[0];
else {
return last_chunk[index];
}
}(data[2] & (std::bit_ceil(last_chunk.size()) - 1));
// decode buffer size
const std::size_t decode_buffer_size = (data[4] << 8) + data[3];
// line length must be at least 4
const std::size_t line_length = unsigned{data[5]} + 4u;
data += optionbytes;
size -= optionbytes;
switch (action) {
case 0: {
const std::span<const char> chardata{(const char*)data, size};
roundtrip(chardata, selected_option, selected_last_chunk, line_length);
} break;
case 1: {
const std::span<const char> chardata{(const char*)data, size};
decode(chardata, selected_option, selected_last_chunk);
} break;
case 2: {
const std::span<const char16_t> chardata{(const char16_t*)data, size / 2};
decode(chardata, selected_option, selected_last_chunk);
} break;
case 3: {
const std::span<const char> chardata{(const char*)data, size};
decode_safe(chardata, selected_option, decode_buffer_size,
selected_last_chunk);
} break;
case 4: {
const std::span<const char16_t> chardata{(const char16_t*)data, size / 2};
decode_safe(chardata, selected_option, decode_buffer_size,
selected_last_chunk);
} break;
}
return 0;
}
|