File: conversion.cpp

package info (click to toggle)
simdutf 7.7.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,244 kB
  • sloc: cpp: 60,074; ansic: 14,226; python: 3,364; sh: 321; makefile: 12
file content (669 lines) | stat: -rw-r--r-- 28,538 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
// this fuzzes the convert_ functions
// by Paul Dreik 2024

#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <iomanip>
#include <iostream>
#include <span>
#include <vector>

#include "helpers/common.h"
#include "helpers/nameof.hpp"

#include "simdutf.h"

// clang-format off
// suppress warnings from attributes when expanding function pointers in
// nameof macros
#if !defined(SIMDUTF_REGULAR_VISUAL_STUDIO)
SIMDUTF_DISABLE_GCC_WARNING(-Wignored-attributes);
#endif
//clang-format on


// these knobs tweak how the fuzzer works
constexpr bool allow_implementations_to_differ = false;
constexpr bool use_canary_in_output = true;
constexpr bool use_separate_allocation = true;

enum class UtfEncodings { UTF16BE, UTF16LE, UTF8, UTF32, LATIN1 };

template <UtfEncodings encoding> struct ValidationFunctionTrait {};

template <> struct ValidationFunctionTrait<UtfEncodings::UTF16BE> {
  static inline auto Validation = &simdutf::implementation::validate_utf16be;
  static inline auto ValidationWithErrors =
      &simdutf::implementation::validate_utf16be_with_errors;
  static inline std::string ValidationWithErrorsName{
      NAMEOF(&simdutf::implementation::validate_utf16be_with_errors)};
  static inline std::string ValidationName{
      NAMEOF(&simdutf::implementation::validate_utf16be)};
  using RawType = char16_t;
};
template <> struct ValidationFunctionTrait<UtfEncodings::UTF16LE> {
  static inline auto Validation = &simdutf::implementation::validate_utf16le;
  static inline auto ValidationWithErrors =
      &simdutf::implementation::validate_utf16le_with_errors;
  static inline std::string ValidationWithErrorsName{
      NAMEOF(&simdutf::implementation::validate_utf16le_with_errors)};
  static inline std::string ValidationName{
      NAMEOF(&simdutf::implementation::validate_utf16le)};
  using RawType = char16_t;
};
template <> struct ValidationFunctionTrait<UtfEncodings::UTF32> {
  static inline auto Validation = &simdutf::implementation::validate_utf32;
  static inline auto ValidationWithErrors =
      &simdutf::implementation::validate_utf32_with_errors;
  static inline std::string ValidationWithErrorsName{
      NAMEOF(&simdutf::implementation::validate_utf32_with_errors)};
  static inline std::string ValidationName{
      NAMEOF(&simdutf::implementation::validate_utf32)};
  using RawType = char32_t;
};
template <> struct ValidationFunctionTrait<UtfEncodings::UTF8> {
  static inline auto Validation = &simdutf::implementation::validate_utf8;
  static inline auto ValidationWithErrors =
      &simdutf::implementation::validate_utf8_with_errors;
  static inline std::string ValidationWithErrorsName{
      NAMEOF(&simdutf::implementation::validate_utf8_with_errors)};
  static inline std::string ValidationName{
      NAMEOF(&simdutf::implementation::validate_utf8)};
  using RawType = char;
};
template <> struct ValidationFunctionTrait<UtfEncodings::LATIN1> {
  // note - there are no validation functions for latin1, all input is valid.
  using RawType = char;
};

constexpr std::string_view nameoftype(char) { return "char"; }
constexpr std::string_view nameoftype(char16_t) { return "char16_t"; }
constexpr std::string_view nameoftype(char32_t) { return "char32_t"; }

/// given the name of a conversion function, return the enum describing the
/// *from* type. must be a macro because of string view not being sufficiently
/// constexpr.
#define ENCODING_FROM_CONVERSION_NAME(x)                                       \
  []() {                                                                       \
    using sv = std::string_view;                                               \
    using enum UtfEncodings;                                                   \
    if constexpr (sv{NAMEOF(x)}.find("utf16be_to") != sv::npos) {              \
      return UTF16BE;                                                          \
    } else if constexpr (sv{NAMEOF(x)}.find("utf16le_to") != sv::npos) {       \
      return UTF16LE;                                                          \
    } else if constexpr (sv{NAMEOF(x)}.find("utf32_to") != sv::npos) {         \
      return UTF32;                                                            \
    } else if constexpr (sv{NAMEOF(x)}.find("utf8_to") != sv::npos) {          \
      return UTF8;                                                             \
    } else if constexpr (sv{NAMEOF(x)}.find("latin1_to") != sv::npos) {        \
      return LATIN1;                                                           \
    } else {                                                                   \
      throw "oops";                                                            \
    }                                                                          \
  }()

/// given the name of a conversion function, return the enum describing the
/// *to* type. must be a macro because of string view not being sufficiently
/// constexpr.
#define ENCODING_TO_CONVERSION_NAME(x)                                         \
  []() {                                                                       \
    using sv = std::string_view;                                               \
    using enum UtfEncodings;                                                   \
    if constexpr (sv{NAMEOF(x)}.find("to_utf16be") != sv::npos) {              \
      return UTF16BE;                                                          \
    } else if constexpr (sv{NAMEOF(x)}.find("to_utf16le") != sv::npos) {       \
      return UTF16LE;                                                          \
    } else if constexpr (sv{NAMEOF(x)}.find("to_utf32") != sv::npos) {         \
      return UTF32;                                                            \
    } else if constexpr (sv{NAMEOF(x)}.find("to_utf8") != sv::npos) {          \
      return UTF8;                                                             \
    } else if constexpr (sv{NAMEOF(x)}.find("to_latin1") != sv::npos) {        \
      return LATIN1;                                                           \
    } else {                                                                   \
      throw "oops";                                                            \
    }                                                                          \
  }()

template <typename R> struct result {
  R retval{};
  std::string outputhash;
  auto operator<=>(const result<R>&) const = default;
};

template <typename R>
std::ostream& operator<<(std::ostream& os, const result<R>& r) {
  os << "[retval=" << r.retval << ", output hash=" << r.outputhash << "]";
  return os;
}

template <UtfEncodings From, UtfEncodings To,
          member_function_pointer LengthFunction,
          member_function_pointer ConversionFunction>
struct Conversion {
  LengthFunction lengthcalc;
  ConversionFunction conversion;
  std::string lengthcalcname;
  std::string name;

  using FromType = ValidationFunctionTrait<From>::RawType;
  using ToType = ValidationFunctionTrait<To>::RawType;

  using FromSpan = std::span<const FromType>;

  using ConversionResult =
      std::invoke_result<ConversionFunction, const simdutf::implementation*,
                         const FromType*, std::size_t, ToType*>::type;

  struct validation_result {
    bool valid{};
    bool implementations_agree{};
  };

  struct length_result {
    std::vector<std::size_t> length{};
    bool implementations_agree{};
  };

  struct conversion_result {
    std::size_t written{};
    bool implementations_agree{};
  };

  void fuzz(std::span<const char> chardata) const {
    // assume the input is aligned to FromType
    const FromSpan from{reinterpret_cast<const FromType*>(chardata.data()),
                        chardata.size() / sizeof(FromType)};

    static const bool do_print_testcase =
        std::getenv("PRINT_FUZZ_CASE") != nullptr;

    if (do_print_testcase) {
      dump_testcase(from, std::cerr);
      std::exit(EXIT_SUCCESS);
    }

    do {
      // step 0 - is the input valid?
      const auto [inputisvalid, valid_input_agree] = verify_valid_input(from);
      if (!valid_input_agree && !allow_implementations_to_differ)
        break;

      // step 1 - count the input (only makes sense for some of the encodings)
      if constexpr (From == UtfEncodings::UTF16BE ||
                    From == UtfEncodings::UTF16LE ||
                    From == UtfEncodings::UTF8) {
        if (!count_the_input(from) && !allow_implementations_to_differ)
          break;
      }

      // step 2 - what is the required size of the output?
      const auto [output_length, length_agree] =
          calculate_length(from, inputisvalid);
      if (!length_agree && !allow_implementations_to_differ)
        break;

      if (!inputisvalid && name.find("valid") != std::string::npos) {
        // don't run the conversion step, it requires valid input
        return;
      }

      // step 3 - run the conversion
      const auto [written, outputs_agree] =
          do_conversion(from, output_length, inputisvalid);
      if (!outputs_agree && !allow_implementations_to_differ)
        break;

      // coming this far means no problems were found
      return;
    } while (0);
    // if we come here, something failed
    std::cerr << "something failed, rerun with PRINT_FUZZ_CASE set to print a "
                 "reproducer to stderr\n";
    std::abort();
  }

  template <typename Dummy = void>
    requires(From != UtfEncodings::LATIN1)
  validation_result verify_valid_input(FromSpan src) const {
    validation_result ret{};

    auto input_validation = ValidationFunctionTrait<From>::ValidationWithErrors;
    const auto implementations = get_supported_implementations();
    std::vector<simdutf::result> results;
    results.reserve(implementations.size());

    for (auto impl : implementations) {
      results.push_back(
          std::invoke(input_validation, impl, src.data(), src.size()));

      // make sure the validation variant that returns a bool agrees
      const bool validation1 = results.back().error == simdutf::SUCCESS;
      const bool validation2 =
          std::invoke(ValidationFunctionTrait<From>::Validation, impl,
                      src.data(), src.size());
      if (validation1 != validation2) {
        std::cerr << "begin errormessage for verify_valid_input()\n";
        std::cerr << ValidationFunctionTrait<From>::ValidationWithErrorsName
                  << " gives " << validation1 << " while "
                  << ValidationFunctionTrait<From>::ValidationName << " gave "
                  << validation2 << " for implementation " << impl->name()
                  << '\n';
        std::cerr << "end errormessage\n";
        std::abort();
      }
    }

    auto neq = [](const auto& a, const auto& b) { return a != b; };
    if (std::ranges::adjacent_find(results, neq) != results.end()) {
      std::cerr << "begin errormessage for verify_valid_input()\n";
      std::cerr << "in fuzz case for "
                << ValidationFunctionTrait<From>::ValidationWithErrorsName
                << " invoked with " << src.size() << " elements:\n";
      for (std::size_t i = 0; i < results.size(); ++i) {
        std::cerr << "got return " << std::dec << results[i]
                  << " from implementation " << implementations[i]->name()
                  << '\n';
      }
      std::cerr << "end errormessage\n";
      ret.implementations_agree = false;
    } else {
      ret.implementations_agree = true;
    }
    ret.valid = std::ranges::all_of(results, [](const simdutf::result& r) {
      return r.error == simdutf::SUCCESS;
    });
    return ret;
  }

  template <typename Dummy = void>
    requires(From == UtfEncodings::LATIN1)
  validation_result verify_valid_input(FromSpan) const {
    // all latin1 input is valid. there is no simdutf validation function for
    // it.
    return validation_result{.valid = true, .implementations_agree = true};
  }

  bool count_the_input(FromSpan src) const {
    const auto implementations = get_supported_implementations();
    std::vector<std::size_t> results;
    results.reserve(implementations.size());

    for (auto impl : implementations) {
      std::size_t ret;
      if constexpr (From == UtfEncodings::UTF16BE) {
        ret = impl->count_utf16be(src.data(), src.size());
      } else if constexpr (From == UtfEncodings::UTF16LE) {
        ret = impl->count_utf16le(src.data(), src.size());
      } else if constexpr (From == UtfEncodings::UTF8) {
        ret = impl->count_utf8(src.data(), src.size());
      }
      results.push_back(ret);
    }
    auto neq = [](const auto& a, const auto& b) { return a != b; };
    if (std::ranges::adjacent_find(results, neq) != results.end()) {
      std::cerr << "begin errormessage for count_the_input()\n";
      std::cerr << "in fuzz case for "
                << ValidationFunctionTrait<From>::ValidationWithErrorsName
                << " invoked with " << src.size() << " elements:\n";
      for (std::size_t i = 0; i < results.size(); ++i) {
        std::cerr << "got return " << std::dec << results[i]
                  << " from implementation " << implementations[i]->name()
                  << '\n';
      }
      std::cerr << "end errormessage\n";
      return false;
    }

    return true;
  }

  // this quirk is needed because length calculations do not have consistent
  // signatures since some of them do not look at the input data, just the
  // length of it.
  template <typename Dummy = void>
    requires std::is_invocable_v<LengthFunction, const simdutf::implementation*,
                                 const FromType*, std::size_t>
  std::size_t invoke_lengthcalc(const simdutf::implementation* impl,
                                FromSpan src) const {
    return std::invoke(lengthcalc, impl, src.data(), src.size());
  }
  template <typename Dummy = void>
    requires std::is_invocable_v<LengthFunction, const simdutf::implementation*,
                                 // const FromType *,
                                 std::size_t>
  std::size_t invoke_lengthcalc(const simdutf::implementation* impl,
                                FromSpan src) const {
    return std::invoke(lengthcalc, impl, /*src.data(),*/ src.size());
  }

  length_result calculate_length(FromSpan src, const bool inputisvalid) const {
    length_result ret{};

    const auto implementations = get_supported_implementations();
    std::vector<std::size_t> results;
    results.reserve(implementations.size());

    for (auto impl : implementations) {
      const auto len = invoke_lengthcalc(impl, src);
      results.push_back(len);
      ret.length.push_back(len);
    }

    auto neq = [](const auto& a, const auto& b) { return a != b; };
    if (std::ranges::adjacent_find(results, neq) != results.end()) {
      std::cerr << "begin errormessage for calculate_length\n";
      std::cerr << "in fuzz case invoking " << lengthcalcname << " with "
                << src.size() << " elements with valid input=" << inputisvalid
                << ":\n";
      for (std::size_t i = 0; i < results.size(); ++i) {
        std::cerr << "got return " << std::dec << results[i]
                  << " from implementation " << implementations[i]->name()
                  << '\n';
      }
      std::cerr << "end errormessage\n";
      if (inputisvalid) {
        ret.implementations_agree = false;
      } else {
        std::cerr
            << "impementations are allowed to disagree on invalid input\n";
        ret.implementations_agree = true;
      }
    } else {
      ret.implementations_agree = true;
    }
    return ret;
  }

  conversion_result do_conversion(FromSpan src,
                                  const std::vector<std::size_t>& outlength,
                                  const bool inputisvalid) const {
    conversion_result ret{};

    const auto implementations = get_supported_implementations();

    std::vector<result<ConversionResult>> results;
    results.reserve(implementations.size());

    // put the output in a separate allocation to make access violations easier
    // to catch
    std::vector<std::vector<ToType>> outputbuffers;
    outputbuffers.reserve(implementations.size());
    for (std::size_t i = 0; i < implementations.size(); ++i) {
      auto impl = implementations[i];
      const ToType canary1{42};
      auto& outputbuffer = outputbuffers.emplace_back(outlength.at(i), canary1);
      const auto implret1 = std::invoke(conversion, impl, src.data(),
                                        src.size(), outputbuffer.data());
      // was the conversion successful?
      const auto success = [](const ConversionResult& r) -> bool {
        if constexpr (std::is_same_v<ConversionResult, std::size_t>) {
          return r != 0;
        } else {
          return r.error == simdutf::error_code::SUCCESS;
        }
      }(implret1);
      const auto hash1 = FNV1A_hash::as_str(outputbuffer);
      if constexpr (use_canary_in_output) {
        // optionally convert again, this time with the buffer filled with
        // a different value. if the output differs, it means some of the buffer
        // was not written to by the conversion function.
        const ToType canary2{25};
        const auto outputbuffer_first_run = outputbuffer;
        std::ranges::fill(outputbuffer, canary2);
        const auto implret2 = std::invoke(conversion, impl, src.data(),
                                          src.size(), outputbuffer.data());

        if (implret1 != implret2) {
          std::cerr << "different return value the second time!\n";
          std::abort();
        }
        if (inputisvalid && success) {
          // only care about the output if the input is valid
          const auto hash2 = FNV1A_hash::as_str(outputbuffer);
          if (hash1 != hash2) {
            std::cerr << "different output the second time!\n";
            std::cerr << "implementation " << impl->name() << " " << name
                      << '\n';
            std::cerr << "input is valid=" << inputisvalid << '\n';
            std::cerr << "output length=" << outputbuffer.size() << '\n';
            std::cerr << "conversion was a success? " << success << '\n';
            for (std::size_t j = 0; j < outputbuffer.size(); ++j) {
              std::cerr << "output[" << j << "]\t" << +outputbuffer_first_run[j]
                        << '\t' << +outputbuffer[j] << '\n';
            }
            std::abort();
          }
        }
      }
      results.emplace_back(implret1, success ? hash1 : "");
    }

    // do not require implementations to give the same output if
    // the input is not valid.
    if (!inputisvalid) {
      for (auto& e : results) {
        e.outputhash.clear();
      }
    }

    auto neq = [](const auto& a, const auto& b) { return a != b; };
    if (std::ranges::adjacent_find(results, neq) != results.end()) {
      std::cerr << "begin errormessage for do_conversion\n";
      std::cerr << "in fuzz case for " << name << " invoked with " << src.size()
                << " elements:\n";
      std::cerr << "input data is valid ? " << inputisvalid << '\n';
      for (std::size_t i = 0; i < results.size(); ++i) {
        std::cerr << "got return " << std::dec << results[i]
                  << " from implementation " << implementations[i]->name()
                  << " using outlen=" << outlength.at(i) << '\n';
      }
      for (std::size_t i = 0; i < results.size(); ++i) {
        std::cerr << "implementation " << implementations[i]->name()
                  << " out: ";
        for (const auto e : outputbuffers.at(i)) {
          std::cerr << +e << ", ";
        }
        std::cerr << '\n';
      }
      std::cerr << "end errormessage\n";
      ret.implementations_agree = false;
    } else {
      ret.implementations_agree = true;
    }
    return ret;
  }

  void dump_testcase(FromSpan typedspan, std::ostream& os) const {
    const auto testhash = FNV1A_hash::as_str(name, typedspan);

    os << "// begin testcase\n";
    os << "TEST(issue_" << name << "_" << testhash << ") {\n";
    os << " alignas(" << sizeof(FromType) << ") const unsigned char data[]={";
    const auto first = reinterpret_cast<const unsigned char*>(typedspan.data());
    const auto last = first + typedspan.size_bytes();
    for (auto it = first; it != last; ++it) {
      os << "0x" << std::hex << std::setfill('0') << std::setw(2) << (+*it)
         << (it + 1 == last ? "};\n" : ", ");
    }
    os << " constexpr std::size_t data_len_bytes=sizeof(data);\n";
    os << " constexpr std::size_t data_len=data_len_bytes/sizeof("
       << nameoftype(FromType{}) << ");\n";
    if constexpr (From != UtfEncodings::LATIN1) {
      os << "const auto validation1=implementation."
         << ValidationFunctionTrait<From>::ValidationWithErrorsName
         << "((const " << nameoftype(FromType{}) << "*) data,\n data_len);\n";
      os << "   ASSERT_EQUAL(validation1.count, 1234);\n";
      os << "   ASSERT_EQUAL(validation1.error, "
            "simdutf::error_code::SUCCESS);\n";
      os << '\n';
      os << "const bool validation2=implementation."
         << ValidationFunctionTrait<From>::ValidationName << "((const "
         << nameoftype(FromType{}) << "*) data,\n data_len);\n";
      os << "   "
            "ASSERT_EQUAL(validation1.error==simdutf::error_code::SUCCESS,"
            "validation2);\n";
      os << '\n';
      os << " if(validation1.error!= simdutf::error_code::SUCCESS) {return;}\n";
    }

    if (std::is_invocable_v<LengthFunction, const simdutf::implementation*,
                            const FromType*, std::size_t>) {
      os << "const auto outlen=implementation." << lengthcalcname << "((const "
         << nameoftype(FromType{}) << "*) data,\n data_len);\n";
    } else if (std::is_invocable_v<LengthFunction,
                                   const simdutf::implementation*,
                                   std::size_t>) {
      os << "const auto outlen=implementation." << lengthcalcname
         << "(data_len);\n";
    } else {
      // programming error
      std::abort();
    }
    os << "ASSERT_EQUAL(outlen, 1234);\n";
    os << "std::vector<" << nameoftype(ToType{}) << "> output(outlen);\n";
    os << "const auto r = implementation." << name << "((const "
       << nameoftype(FromType{}) << "*) data\n, data_len\n, output.data());\n";

    if constexpr (std::is_same_v<ConversionResult, simdutf::result>) {
      os << " ASSERT_EQUAL(r.error,simdutf::error_code::SUCCESS);\n";
      os << " ASSERT_EQUAL(r.count,1234);\n";
    } else {
      os << "   ASSERT_EQUAL(r, 1234);\n";
    }

    // dump the output data
    os << "const std::vector<" << nameoftype(ToType{}) << "> expected_out{};\n";
    os << " ASSERT_TRUE(output.size()==expected_out.size());\n";
    os << " for(std::size_t i=0; i<output.size(); ++i) { "
          "ASSERT_EQUAL(+output.at(i),+expected_out.at(i));};\n";

    os << "}\n";
    os << "// end testcase\n";
  }
};

const auto populate_functions() {
  using I = simdutf::implementation;
  using FuzzSignature = void (*)(std::span<const char>);

#define ADD(lenfunc, conversionfunc)                                           \
  FuzzSignature {                                                              \
    +[](std::span<const char> chardata) {                                      \
      const auto c =                                                           \
          Conversion<ENCODING_FROM_CONVERSION_NAME(&I::conversionfunc),        \
                     ENCODING_TO_CONVERSION_NAME(&I::conversionfunc),          \
                     decltype(&I::lenfunc), decltype(&I::conversionfunc)>{     \
              &I::lenfunc, &I::conversionfunc,                                 \
              std::string{NAMEOF(&I::lenfunc)},                                \
              std::string{NAMEOF(&I::conversionfunc)}};                        \
      c.fuzz(chardata);                                                        \
    }                                                                          \
  }

  return std::array{
      // all these cases require valid input for invoking the convert function

      // see #493
      // IGNORE(latin1_length_from_utf16, convert_valid_utf16be_to_latin1),
      ADD(utf32_length_from_utf16be, convert_valid_utf16be_to_utf32),
      ADD(utf8_length_from_utf16be, convert_valid_utf16be_to_utf8),

      //  see #493
      // IGNORE(latin1_length_from_utf16, convert_valid_utf16le_to_latin1),
      ADD(utf32_length_from_utf16le, convert_valid_utf16le_to_utf32),
      ADD(utf8_length_from_utf16le, convert_valid_utf16le_to_utf8),

      // see #493
      // IGNORE(latin1_length_from_utf32, convert_valid_utf32_to_latin1),
      ADD(utf16_length_from_utf32, convert_valid_utf32_to_utf16be),
      ADD(utf16_length_from_utf32, convert_valid_utf32_to_utf16le),
      ADD(utf8_length_from_utf32, convert_valid_utf32_to_utf8),

      // see #493
      // IGNORE(latin1_length_from_utf8, convert_valid_utf8_to_latin1),
      ADD(utf16_length_from_utf8, convert_valid_utf8_to_utf16be),
      ADD(utf16_length_from_utf8, convert_valid_utf8_to_utf16le),
      ADD(utf32_length_from_utf8, convert_valid_utf8_to_utf32),

      // all these cases operate on arbitrary data
      ADD(latin1_length_from_utf16, convert_utf16be_to_latin1),
      ADD(utf32_length_from_utf16be, convert_utf16be_to_utf32),
      ADD(utf8_length_from_utf16be, convert_utf16be_to_utf8),

      ADD(latin1_length_from_utf16, convert_utf16le_to_latin1),
      ADD(utf32_length_from_utf16le, convert_utf16le_to_utf32),
      ADD(utf8_length_from_utf16le, convert_utf16le_to_utf8),

      ADD(latin1_length_from_utf32, convert_utf32_to_latin1),
      ADD(utf16_length_from_utf32, convert_utf32_to_utf16be),
      ADD(utf16_length_from_utf32, convert_utf32_to_utf16le),
      ADD(utf8_length_from_utf32, convert_utf32_to_utf8),

      ADD(latin1_length_from_utf8, convert_utf8_to_latin1),
      ADD(utf16_length_from_utf8, convert_utf8_to_utf16be),
      ADD(utf16_length_from_utf8, convert_utf8_to_utf16le),
      ADD(utf32_length_from_utf8, convert_utf8_to_utf32),

      // all these cases operate on arbitrary data and use the _with_errors
      // variant
      ADD(latin1_length_from_utf16, convert_utf16be_to_latin1_with_errors),
      ADD(utf32_length_from_utf16be, convert_utf16be_to_utf32_with_errors),
      ADD(utf8_length_from_utf16be, convert_utf16be_to_utf8_with_errors),

      ADD(latin1_length_from_utf16, convert_utf16le_to_latin1_with_errors),
      ADD(utf32_length_from_utf16le, convert_utf16le_to_utf32_with_errors),
      ADD(utf8_length_from_utf16le, convert_utf16le_to_utf8_with_errors),

      ADD(latin1_length_from_utf32, convert_utf32_to_latin1_with_errors),
      ADD(utf16_length_from_utf32, convert_utf32_to_utf16be_with_errors),
      ADD(utf16_length_from_utf32, convert_utf32_to_utf16le_with_errors),
      ADD(utf8_length_from_utf32, convert_utf32_to_utf8_with_errors),

      ADD(latin1_length_from_utf8, convert_utf8_to_latin1_with_errors),
      ADD(utf16_length_from_utf8, convert_utf8_to_utf16be_with_errors),
      ADD(utf16_length_from_utf8, convert_utf8_to_utf16le_with_errors),
      ADD(utf32_length_from_utf8, convert_utf8_to_utf32_with_errors),

      // these are a bit special since all input is valid
      ADD(utf32_length_from_latin1, convert_latin1_to_utf32),
      ADD(utf16_length_from_latin1, convert_latin1_to_utf16be),
      ADD(utf16_length_from_latin1, convert_latin1_to_utf16le),
      ADD(utf8_length_from_latin1, convert_latin1_to_utf8)};

#undef ADD
}

extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
  static const auto fptrs = populate_functions();
  constexpr std::size_t Ncases = fptrs.size();

  // pick one of the function pointers, based on the fuzz data
  // the first byte is which action to take. step forward
  // several bytes so the input is aligned.
  if (size < 4) {
    return 0;
  }

  constexpr auto actionmask = std::bit_ceil(Ncases) - 1;
  const auto action = data[0] & actionmask;
  data += 4;
  size -= 4;

  if (action >= Ncases) {
    return 0;
  }

  if constexpr (use_separate_allocation) {
    // this is better at excercising null input and catch buffer underflows
    const std::vector<char> separate{data, data + size};
    fptrs[action](std::span(separate));
  } else {
    std::span<const char> chardata{(const char*)data, size};
    fptrs[action](chardata);
  }

  return 0;
}