1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/**
* Big-Endian/Little-endian tests.
*/
#include "simdutf.h"
#include <tests/helpers/test.h>
// We use explicit arrays so that no funny business is possible.
const unsigned char utf8_string[] = {0x40, 0xc2, 0xa7, 0xe2, 0x88,
0x88, 0xf0, 0x9d, 0x92, 0xaa};
const char *utf8 = reinterpret_cast<const char *>(utf8_string);
const size_t utf8_size = sizeof(utf8_string) / sizeof(uint8_t);
alignas(char16_t) const unsigned char utf16le_string[] = {
0x40, 0x00, 0xa7, 0x00, 0x08, 0x22, 0x35, 0xd8, 0xaa, 0xdc};
const char16_t *utf16le = reinterpret_cast<const char16_t *>(utf16le_string);
const size_t utf16_size = sizeof(utf16le_string) / sizeof(uint16_t);
alignas(char16_t) const unsigned char utf16be_string[] = {
0x00, 0x40, 0x00, 0xa7, 0x22, 0x08, 0xd8, 0x35, 0xdc, 0xaa};
const char16_t *utf16be = reinterpret_cast<const char16_t *>(utf16be_string);
#if SIMDUTF_IS_BIG_ENDIAN
const char16_t *utf16 = utf16be;
#else
const char16_t *utf16 = utf16le;
#endif
// Native order
#if SIMDUTF_IS_BIG_ENDIAN
alignas(char32_t) const unsigned char utf32_string[] = {
0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0xa7,
0x00, 0x00, 0x22, 0x08, 0x00, 0x01, 0xd4, 0xaa};
const char32_t *utf32 = reinterpret_cast<const char32_t *>(utf32_string);
#else
alignas(char32_t) const unsigned char utf32_string[] = {
0x40, 0x00, 0x00, 0x00, 0xa7, 0x00, 0x00, 0x00,
0x08, 0x22, 0x00, 0x00, 0xaa, 0xd4, 0x01, 0x00};
const char32_t *utf32 = reinterpret_cast<const char32_t *>(utf32_string);
#endif
const size_t utf32_size = sizeof(utf32_string) / sizeof(char32_t);
const size_t number_of_code_points = utf32_size;
TEST(validate_utf8) {
simdutf::result res =
implementation.validate_utf8_with_errors(utf8, utf8_size);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
}
TEST(validate_utf16le) {
simdutf::result res =
implementation.validate_utf16le_with_errors(utf16le, utf16_size);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
}
TEST(validate_utf16be) {
simdutf::result res =
implementation.validate_utf16be_with_errors(utf16be, utf16_size);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
}
TEST(validate_utf32) {
simdutf::result res =
implementation.validate_utf32_with_errors(utf32, utf32_size);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
}
TEST(count_utf8) {
size_t count = implementation.count_utf8(utf8, utf8_size);
ASSERT_EQUAL(count, number_of_code_points);
}
TEST(count_utf16le) {
size_t count = implementation.count_utf16le(utf16le, utf16_size);
ASSERT_EQUAL(count, number_of_code_points);
}
TEST(count_utf16be) {
size_t count = implementation.count_utf16be(
reinterpret_cast<const char16_t *>(utf16be_string),
sizeof(utf16be_string) / sizeof(uint16_t));
ASSERT_EQUAL(count, number_of_code_points);
}
TEST(convert_utf8_to_utf16le) {
char16_t buffer[utf16_size];
size_t count =
implementation.convert_utf8_to_utf16le(utf8, utf8_size, buffer);
ASSERT_EQUAL(count, utf16_size);
for (size_t i = 0; i < utf16_size; i++) {
ASSERT_EQUAL(uint16_t(buffer[i]), uint16_t(utf16le[i]));
}
}
TEST(convert_utf8_to_utf16be) {
char16_t buffer[utf16_size];
size_t count =
implementation.convert_utf8_to_utf16be(utf8, utf8_size, buffer);
ASSERT_EQUAL(count, utf16_size);
for (size_t i = 0; i < utf16_size; i++) {
ASSERT_EQUAL(uint16_t(buffer[i]), uint16_t(utf16be[i]));
}
}
TEST(convert_utf8_to_utf32) {
char32_t buffer[utf32_size];
size_t count = implementation.convert_utf8_to_utf32(utf8, utf8_size, buffer);
ASSERT_EQUAL(count, utf32_size);
for (size_t i = 0; i < utf32_size; i++) {
ASSERT_EQUAL(uint32_t(buffer[i]), uint32_t(utf32[i]));
}
}
TEST(convert_utf32_to_utf8) {
char buffer[utf8_size];
size_t count =
implementation.convert_utf32_to_utf8(utf32, utf32_size, buffer);
ASSERT_EQUAL(count, utf8_size);
for (size_t i = 0; i < utf8_size; i++) {
ASSERT_EQUAL(buffer[i], utf8[i]);
}
}
TEST(convert_utf32_to_utf16be) {
char buffer[utf8_size];
size_t count =
implementation.convert_utf32_to_utf8(utf32, utf32_size, buffer);
ASSERT_EQUAL(count, utf8_size);
for (size_t i = 0; i < utf8_size; i++) {
ASSERT_EQUAL(buffer[i], utf8[i]);
}
}
TEST(convert_utf32_to_utf16le) {
char buffer[utf8_size];
size_t count =
implementation.convert_utf32_to_utf8(utf32, utf32_size, buffer);
ASSERT_EQUAL(count, utf8_size);
for (size_t i = 0; i < utf8_size; i++) {
ASSERT_EQUAL(buffer[i], utf8[i]);
}
}
TEST(convert_utf16le_to_utf8) {
char buffer[utf8_size];
size_t count =
implementation.convert_utf16le_to_utf8(utf16le, utf16_size, buffer);
ASSERT_EQUAL(count, utf8_size);
for (size_t i = 0; i < utf8_size; i++) {
ASSERT_EQUAL(buffer[i], utf8[i]);
}
}
TEST(convert_utf16le_to_utf32) {
char32_t buffer[utf32_size];
size_t count =
implementation.convert_utf16le_to_utf32(utf16le, utf16_size, buffer);
ASSERT_EQUAL(count, utf32_size);
for (size_t i = 0; i < utf32_size; i++) {
ASSERT_EQUAL(uint32_t(buffer[i]), uint32_t(utf32[i]));
}
}
TEST(convert_utf16be_to_utf8) {
char buffer[utf8_size];
size_t count =
implementation.convert_utf16be_to_utf8(utf16be, utf16_size, buffer);
ASSERT_EQUAL(count, utf8_size);
for (size_t i = 0; i < utf8_size; i++) {
ASSERT_EQUAL(buffer[i], utf8[i]);
}
}
TEST(convert_utf16be_to_utf32) {
char32_t buffer[utf32_size];
size_t count =
implementation.convert_utf16be_to_utf32(utf16be, utf16_size, buffer);
ASSERT_EQUAL(count, utf32_size);
for (size_t i = 0; i < utf32_size; i++) {
ASSERT_EQUAL(uint32_t(buffer[i]), uint32_t(utf32[i]));
}
}
TEST_MAIN
|