1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
#include "simdutf.h"
#include <array>
#include <vector>
#include <tests/reference/validate_utf16.h>
#include <tests/helpers/transcode_test_base.h>
#include <tests/helpers/random_int.h>
#include <tests/helpers/test.h>
namespace {
constexpr std::array<size_t, 7> input_size{7, 16, 12, 64, 67, 128, 256};
constexpr simdutf::endianness BE = simdutf::endianness::BIG;
using simdutf::tests::helpers::transcode_utf16_to_utf32_test_base;
} // namespace
TEST_LOOP(convert_2_UTF16_bytes) {
// range for 1, 2 or 3 UTF-8 bytes
simdutf::tests::helpers::RandomIntRanges random(
{{0x0000, 0x007f}, {0x0080, 0x07ff}, {0x0800, 0xd7ff}, {0xe000, 0xffff}},
seed);
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char32_t *utf32) -> size_t {
return implementation.convert_utf16be_to_utf32(utf16, size, utf32);
};
auto size_procedure = [&implementation](const char16_t *utf16,
size_t size) -> size_t {
return implementation.utf32_length_from_utf16be(utf16, size);
};
for (size_t size : input_size) {
transcode_utf16_to_utf32_test_base test(BE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_with_surrogates) {
// range for 3 or 4 UTF-8 bytes
simdutf::tests::helpers::RandomIntRanges random(
{{0x0800, 0xd800 - 1}, {0xe000, 0x10ffff}}, seed);
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char32_t *utf32) -> size_t {
return implementation.convert_utf16be_to_utf32(utf16, size, utf32);
};
auto size_procedure = [&implementation](const char16_t *utf16,
size_t size) -> size_t {
return implementation.utf32_length_from_utf16be(utf16, size);
};
for (size_t size : input_size) {
transcode_utf16_to_utf32_test_base test(BE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST(convert_fails_if_there_is_sole_low_surrogate) {
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char32_t *utf32) -> size_t {
return implementation.convert_utf16be_to_utf32(utf16, size, utf32);
};
const size_t size = 64;
transcode_utf16_to_utf32_test_base test(BE, []() { return '*'; }, size + 32);
for (char16_t low_surrogate = 0xdc00; low_surrogate <= 0xdfff;
low_surrogate++) {
for (size_t i = 0; i < size; i++) {
const auto old = test.input_utf16[i];
test.input_utf16[i] = to_utf16be(low_surrogate);
ASSERT_TRUE(test(procedure));
test.input_utf16[i] = old;
}
}
}
TEST(convert_fails_if_there_is_sole_high_surrogate) {
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char32_t *utf32) -> size_t {
return implementation.convert_utf16be_to_utf32(utf16, size, utf32);
};
const size_t size = 64;
transcode_utf16_to_utf32_test_base test(BE, []() { return '*'; }, size + 32);
for (char16_t high_surrogate = 0xdc00; high_surrogate <= 0xdfff;
high_surrogate++) {
for (size_t i = 0; i < size; i++) {
const auto old = test.input_utf16[i];
test.input_utf16[i] = to_utf16be(high_surrogate);
ASSERT_TRUE(test(procedure));
test.input_utf16[i] = old;
}
}
}
TEST(
convert_fails_if_there_is_low_surrogate_is_followed_by_another_low_surrogate) {
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char32_t *utf32) -> size_t {
return implementation.convert_utf16be_to_utf32(utf16, size, utf32);
};
const size_t size = 64;
transcode_utf16_to_utf32_test_base test(BE, []() { return '*'; }, size + 32);
for (char16_t low_surrogate = 0xdc00; low_surrogate <= 0xdfff;
low_surrogate++) {
for (size_t i = 0; i < size - 1; i++) {
const auto old0 = test.input_utf16[i + 0];
const auto old1 = test.input_utf16[i + 1];
test.input_utf16[i + 0] = to_utf16be(low_surrogate);
test.input_utf16[i + 1] = to_utf16be(low_surrogate);
ASSERT_TRUE(test(procedure));
test.input_utf16[i + 0] = old0;
test.input_utf16[i + 1] = old1;
}
}
}
TEST(convert_fails_if_there_is_surrogate_pair_is_followed_by_high_surrogate) {
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char32_t *utf32) -> size_t {
return implementation.convert_utf16be_to_utf32(utf16, size, utf32);
};
const size_t size = 64;
transcode_utf16_to_utf32_test_base test(BE, []() { return '*'; }, size + 32);
const char16_t low_surrogate = to_utf16be(0xd801);
const char16_t high_surrogate = to_utf16be(0xdc02);
for (size_t i = 0; i < size - 2; i++) {
const auto old0 = test.input_utf16[i + 0];
const auto old1 = test.input_utf16[i + 1];
const auto old2 = test.input_utf16[i + 2];
test.input_utf16[i + 0] = low_surrogate;
test.input_utf16[i + 1] = high_surrogate;
test.input_utf16[i + 2] = high_surrogate;
ASSERT_TRUE(test(procedure));
test.input_utf16[i + 0] = old0;
test.input_utf16[i + 1] = old1;
test.input_utf16[i + 2] = old2;
}
}
TEST(all_possible_8_codepoint_combinations) {
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char32_t *utf32) -> size_t {
return implementation.convert_utf16be_to_utf32(utf16, size, utf32);
};
std::vector<char32_t> output_utf32(256, ' ');
const auto &combinations = all_utf16_combinations(BE);
for (const auto &input_utf16 : combinations) {
if (simdutf::tests::reference::validate_utf16(BE, input_utf16.data(),
input_utf16.size())) {
transcode_utf16_to_utf32_test_base test(BE, input_utf16);
ASSERT_TRUE(test(procedure));
} else {
ASSERT_FALSE(procedure(input_utf16.data(), input_utf16.size(),
output_utf32.data()));
}
}
}
TEST_MAIN
|