1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
#include "simdutf.h"
#include <array>
#include <vector>
#include <tests/reference/validate_utf16_to_latin1.h>
#include <tests/helpers/transcode_test_base.h>
#include <tests/helpers/random_int.h>
#include <tests/helpers/test.h>
namespace {
constexpr std::array<size_t, 7> input_size{7, 16, 12, 64, 67, 128, 256};
constexpr simdutf::endianness LE = simdutf::endianness::LITTLE;
using simdutf::tests::helpers::transcode_utf16_to_latin1_test_base;
} // namespace
// For invalid inputs, we expect the conversion to fail (return 0)
TEST_LOOP(convert_random_inputs) {
simdutf::tests::helpers::RandomInt r(0x00, 0xffff, seed);
for (size_t size : input_size) {
std::vector<char16_t> utf16(size);
for (size_t i = 0; i < size; i++) {
utf16[i] = to_utf16le(r());
}
size_t buffer_size = implementation.latin1_length_from_utf16(size);
std::vector<char> latin1(buffer_size);
size_t actual_size = implementation.convert_utf16le_to_latin1(
utf16.data(), size, latin1.data());
if (simdutf::tests::reference::validate_utf16_to_latin1(LE, utf16.data(),
size)) {
ASSERT_EQUAL(actual_size, buffer_size);
} else {
ASSERT_EQUAL(actual_size, 0);
}
}
}
TEST_LOOP(convert_randoms) {
// range for 1, 2 or 3 UTF-8 bytes
simdutf::tests::helpers::RandomIntRanges random({{0x0000, 0x00ff}}, seed);
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char *latin1) -> size_t {
return implementation.convert_utf16le_to_latin1(utf16, size, latin1);
};
auto size_procedure =
[&implementation](simdutf_maybe_unused const char16_t *utf16,
size_t size) -> size_t {
return implementation.latin1_length_from_utf16(size);
};
for (size_t size : input_size) {
transcode_utf16_to_latin1_test_base test(LE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_1_or_2_UTF16_bytes) {
// range for 1, 2 or 3 UTF-8 bytes
simdutf::tests::helpers::RandomIntRanges random({{0x0000, 0x00ff}}, seed);
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char *latin1) -> size_t {
return implementation.convert_utf16le_to_latin1(utf16, size, latin1);
};
auto size_procedure =
[&implementation](simdutf_maybe_unused const char16_t *utf16,
size_t size) -> size_t {
return implementation.latin1_length_from_utf16(size);
};
for (size_t size : input_size) {
transcode_utf16_to_latin1_test_base test(LE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST(convert_fails_if_input_too_large) {
uint32_t seed{1234};
simdutf::tests::helpers::RandomInt generator(0xff, 0xffff, seed);
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char *latin1) -> size_t {
return implementation.convert_utf16le_to_latin1(utf16, size, latin1);
};
const size_t size = 64;
transcode_utf16_to_latin1_test_base test(LE, []() { return '*'; }, size + 32);
for (size_t j = 0; j < 1000; j++) {
const uint16_t wrong_value = to_utf16le(generator());
for (size_t i = 0; i < size; i++) {
auto old = test.input_utf16[i];
test.input_utf16[i] = wrong_value;
ASSERT_TRUE(test(procedure));
test.input_utf16[i] = old;
}
}
}
TEST_MAIN
|