1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
#include "simdutf.h"
#include <array>
#include <tests/helpers/transcode_test_base.h>
#include <tests/helpers/random_int.h>
#include <tests/helpers/test.h>
namespace {
constexpr std::array<size_t, 7> input_size{7, 16, 12, 64, 67, 128, 256};
constexpr simdutf::endianness LE = simdutf::endianness::LITTLE;
using simdutf::tests::helpers::transcode_utf16_to_utf8_test_base;
} // namespace
TEST(convert_pure_ASCII) {
size_t counter = 0;
auto generator = [&counter]() -> uint32_t { return counter++ & 0x7f; };
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char *utf8) -> size_t {
const simdutf::result res =
implementation.convert_utf16le_to_utf8_with_errors(utf16, size, utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
return res.count;
};
auto size_procedure = [&implementation](const char16_t *utf16,
size_t size) -> size_t {
return implementation.utf8_length_from_utf16le(utf16, size);
};
std::array<size_t, 1> input_size{16};
for (size_t size : input_size) {
transcode_utf16_to_utf8_test_base test(LE, generator, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_1_or_2_UTF8_bytes) {
simdutf::tests::helpers::RandomInt random(
0x0000, 0x07ff, seed); // range for 1 or 2 UTF-8 bytes
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char *utf8) -> size_t {
simdutf::result res =
implementation.convert_utf16le_to_utf8_with_errors(utf16, size, utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
return res.count;
};
auto size_procedure = [&implementation](const char16_t *utf16,
size_t size) -> size_t {
return implementation.utf8_length_from_utf16le(utf16, size);
};
for (size_t size : input_size) {
transcode_utf16_to_utf8_test_base test(LE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_1_or_2_or_3_UTF8_bytes) {
// range for 1, 2 or 3 UTF-8 bytes
simdutf::tests::helpers::RandomIntRanges random(
{{0x0000, 0x007f}, {0x0080, 0x07ff}, {0x0800, 0xd7ff}, {0xe000, 0xffff}},
seed);
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char *utf8) -> size_t {
simdutf::result res =
implementation.convert_utf16le_to_utf8_with_errors(utf16, size, utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
return res.count;
};
auto size_procedure = [&implementation](const char16_t *utf16,
size_t size) -> size_t {
return implementation.utf8_length_from_utf16le(utf16, size);
};
for (size_t size : input_size) {
transcode_utf16_to_utf8_test_base test(LE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_3_or_4_UTF8_bytes) {
// range for 3 or 4 UTF-8 bytes
simdutf::tests::helpers::RandomIntRanges random(
{{0x0800, 0xd800 - 1}, {0xe000, 0x10ffff}}, seed);
auto procedure = [&implementation](const char16_t *utf16, size_t size,
char *utf8) -> size_t {
const simdutf::result res =
implementation.convert_utf16le_to_utf8_with_errors(utf16, size, utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
return res.count;
};
auto size_procedure = [&implementation](const char16_t *utf16,
size_t size) -> size_t {
return implementation.utf8_length_from_utf16le(utf16, size);
};
for (size_t size : input_size) {
transcode_utf16_to_utf8_test_base test(LE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST(convert_fails_if_there_is_sole_low_surrogate) {
const size_t size = 64;
transcode_utf16_to_utf8_test_base test(LE, []() { return '*'; }, size + 32);
for (char16_t low_surrogate = 0xdc00; low_surrogate <= 0xdfff;
low_surrogate++) {
for (size_t i = 0; i < size; i++) {
auto procedure = [&implementation, &i](const char16_t *utf16, size_t size,
char *utf8) -> size_t {
const simdutf::result res =
implementation.convert_utf16le_to_utf8_with_errors(utf16, size,
utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SURROGATE);
ASSERT_EQUAL(res.count, i);
return 0;
};
const auto old = test.input_utf16[i];
test.input_utf16[i] = to_utf16le(low_surrogate);
ASSERT_TRUE(test(procedure));
test.input_utf16[i] = old;
}
}
}
TEST(convert_fails_if_there_is_sole_high_surrogate) {
const size_t size = 64;
transcode_utf16_to_utf8_test_base test(LE, []() { return '*'; }, size + 32);
for (char16_t high_surrogate = 0xdc00; high_surrogate <= 0xdfff;
high_surrogate++) {
for (size_t i = 0; i < size; i++) {
auto procedure = [&implementation, &i](const char16_t *utf16, size_t size,
char *utf8) -> size_t {
const simdutf::result res =
implementation.convert_utf16le_to_utf8_with_errors(utf16, size,
utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SURROGATE);
ASSERT_EQUAL(res.count, i);
return 0;
};
const auto old = test.input_utf16[i];
test.input_utf16[i] = to_utf16le(high_surrogate);
ASSERT_TRUE(test(procedure));
test.input_utf16[i] = old;
}
}
}
TEST(
convert_fails_if_there_is_low_surrogate_is_followed_by_another_low_surrogate) {
const size_t size = 64;
transcode_utf16_to_utf8_test_base test(LE, []() { return '*'; }, size + 32);
for (char16_t low_surrogate = 0xdc00; low_surrogate <= 0xdfff;
low_surrogate++) {
for (size_t i = 0; i < size - 1; i++) {
auto procedure = [&implementation, &i](const char16_t *utf16, size_t size,
char *utf8) -> size_t {
const simdutf::result res =
implementation.convert_utf16le_to_utf8_with_errors(utf16, size,
utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SURROGATE);
ASSERT_EQUAL(res.count, i);
return 0;
};
const auto old0 = test.input_utf16[i + 0];
const auto old1 = test.input_utf16[i + 1];
test.input_utf16[i + 0] = to_utf16le(low_surrogate);
test.input_utf16[i + 1] = to_utf16le(low_surrogate);
ASSERT_TRUE(test(procedure));
test.input_utf16[i + 0] = old0;
test.input_utf16[i + 1] = old1;
}
}
}
TEST(convert_fails_if_there_is_surrogate_pair_is_followed_by_high_surrogate) {
const size_t size = 64;
transcode_utf16_to_utf8_test_base test(LE, []() { return '*'; }, size + 32);
const char16_t low_surrogate = to_utf16le(0xd801);
const char16_t high_surrogate = to_utf16le(0xdc02);
for (size_t i = 0; i < size - 2; i++) {
auto procedure = [&implementation, &i](const char16_t *utf16, size_t size,
char *utf8) -> size_t {
const simdutf::result res =
implementation.convert_utf16le_to_utf8_with_errors(utf16, size, utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SURROGATE);
ASSERT_EQUAL(res.count, i + 2);
return 0;
};
const auto old0 = test.input_utf16[i + 0];
const auto old1 = test.input_utf16[i + 1];
const auto old2 = test.input_utf16[i + 2];
test.input_utf16[i + 0] = low_surrogate;
test.input_utf16[i + 1] = high_surrogate;
test.input_utf16[i + 2] = high_surrogate;
ASSERT_TRUE(test(procedure));
test.input_utf16[i + 0] = old0;
test.input_utf16[i + 1] = old1;
test.input_utf16[i + 2] = old2;
}
}
TEST_MAIN
|