1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
#include "simdutf.h"
#include <array>
#include <vector>
#include <tests/helpers/transcode_test_base.h>
#include <tests/helpers/random_int.h>
#include <tests/helpers/test.h>
namespace {
constexpr std::array<size_t, 7> input_size{7, 16, 12, 64, 67, 128, 256};
constexpr simdutf::endianness BE = simdutf::endianness::BIG;
using simdutf::tests::helpers::transcode_utf32_to_utf16_test_base;
} // namespace
TEST_LOOP(convert_into_2_UTF16_bytes) {
// range for 2 UTF-16 bytes
simdutf::tests::helpers::RandomIntRanges random(
{{0x0000, 0xd7ff}, {0xe000, 0xffff}}, seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char16_t *utf16) -> size_t {
return implementation.convert_utf32_to_utf16be(utf32, size, utf16);
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf16_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf16_test_base test(BE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_4_UTF16_bytes) {
// range for 4 UTF-16 bytes
simdutf::tests::helpers::RandomIntRanges random({{0x10000, 0x10ffff}}, seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char16_t *utf16) -> size_t {
return implementation.convert_utf32_to_utf16be(utf32, size, utf16);
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf16_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf16_test_base test(BE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_2_or_4_UTF16_bytes) {
// range for 2 or 4 UTF-16 bytes (all codepoints)
simdutf::tests::helpers::RandomIntRanges random(
{{0x0000, 0xd7ff}, {0xe000, 0xffff}, {0x10000, 0x10ffff}}, seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char16_t *utf16be) -> size_t {
return implementation.convert_utf32_to_utf16be(utf32, size, utf16be);
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf16_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf16_test_base test(BE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST(convert_fails_if_there_is_surrogate) {
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char16_t *utf16be) -> size_t {
return implementation.convert_utf32_to_utf16be(utf32, size, utf16be);
};
const size_t size = 64;
transcode_utf32_to_utf16_test_base test(BE, []() { return '*'; }, size + 32);
for (char32_t surrogate = 0xd800; surrogate <= 0xdfff; surrogate++) {
for (size_t i = 0; i < size; i++) {
const auto old = test.input_utf32[i];
test.input_utf32[i] = surrogate;
ASSERT_TRUE(test(procedure));
test.input_utf32[i] = old;
}
}
}
TEST(convert_fails_if_input_too_large) {
uint32_t seed{1234};
simdutf::tests::helpers::RandomInt generator(0x110000, 0xffffffff, seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char16_t *utf16be) -> size_t {
return implementation.convert_utf32_to_utf16be(utf32, size, utf16be);
};
const size_t size = 64;
transcode_utf32_to_utf16_test_base test(BE, []() { return '*'; }, size + 32);
for (size_t j = 0; j < 1000; j++) {
const uint32_t wrong_value = generator();
for (size_t i = 0; i < size; i++) {
auto old = test.input_utf32[i];
test.input_utf32[i] = wrong_value;
ASSERT_TRUE(test(procedure));
test.input_utf32[i] = old;
}
}
}
TEST_MAIN
|