1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
#include "simdutf.h"
#include <array>
#include <vector>
#include <tests/helpers/transcode_test_base.h>
#include <tests/helpers/random_int.h>
#include <tests/helpers/test.h>
namespace {
const std::array<size_t, 7> input_size{7, 16, 12, 64, 67, 128, 256};
constexpr simdutf::endianness LE = simdutf::endianness::LITTLE;
using simdutf::tests::helpers::transcode_utf32_to_utf16_test_base;
} // namespace
TEST(issue_convert_utf32_to_utf16le_with_errors_97798701a75ebb21) {
alignas(4) const unsigned char data[] = {
0xfa, 0x04, 0x03, 0x03, 0x00, 0xef, 0xa1, 0xa5, 0x20, 0xef,
0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31,
0x31, 0x96, 0x96, 0x96, 0x04, 0x03, 0x03, 0x96, 0x96, 0x96,
0x96, 0x31, 0x31, 0x31, 0xd8, 0xa1, 0xa1, 0xdb, 0x00, 0x00};
constexpr std::size_t data_len_bytes = sizeof(data);
constexpr std::size_t data_len = data_len_bytes / sizeof(char32_t);
const auto validation1 = implementation.validate_utf32_with_errors(
(const char32_t *)data, data_len);
ASSERT_EQUAL(validation1.count, 0);
ASSERT_EQUAL(validation1.error, simdutf::error_code::TOO_LARGE);
const bool validation2 =
implementation.validate_utf32((const char32_t *)data, data_len);
ASSERT_EQUAL(validation1.error == simdutf::error_code::SUCCESS, validation2);
const auto outlen =
implementation.utf16_length_from_utf32((const char32_t *)data, data_len);
std::vector<char16_t> output(outlen);
const auto r = implementation.convert_utf32_to_utf16le_with_errors(
(const char32_t *)data, data_len, output.data());
ASSERT_EQUAL(r.error, simdutf::error_code::TOO_LARGE);
ASSERT_EQUAL(r.count, 0);
}
TEST_LOOP(convert_into_2_UTF16_bytes) {
// range for 2 UTF-16 bytes
simdutf::tests::helpers::RandomIntRanges random(
{{0x0000, 0xd7ff}, {0xe000, 0xffff}}, seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char16_t *utf16) -> size_t {
simdutf::result res =
implementation.convert_utf32_to_utf16le_with_errors(utf32, size, utf16);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
return res.count;
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf16_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf16_test_base test(LE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_4_UTF16_bytes) {
// range for 4 UTF-16 bytes
simdutf::tests::helpers::RandomIntRanges random({{0x10000, 0x10ffff}}, seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char16_t *utf16) -> size_t {
simdutf::result res =
implementation.convert_utf32_to_utf16le_with_errors(utf32, size, utf16);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
return res.count;
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf16_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf16_test_base test(LE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_2_or_4_UTF16_bytes) {
// range for 2 or 4 UTF-16 bytes (all codepoints)
simdutf::tests::helpers::RandomIntRanges random(
{{0x0000, 0xd7ff}, {0xe000, 0xffff}, {0x10000, 0x10ffff}}, seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char16_t *utf16) -> size_t {
simdutf::result res =
implementation.convert_utf32_to_utf16le_with_errors(utf32, size, utf16);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
return res.count;
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf16_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf16_test_base test(LE, random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST(convert_fails_if_there_is_surrogate) {
const size_t size = 64;
transcode_utf32_to_utf16_test_base test(LE, []() { return '*'; }, size + 32);
for (char32_t surrogate = 0xd800; surrogate <= 0xdfff; surrogate++) {
for (size_t i = 0; i < size; i++) {
auto procedure = [&implementation, &i](const char32_t *utf32, size_t size,
char16_t *utf16) -> size_t {
simdutf::result res =
implementation.convert_utf32_to_utf16le_with_errors(utf32, size,
utf16);
ASSERT_EQUAL(res.error, simdutf::error_code::SURROGATE);
ASSERT_EQUAL(res.count, i);
return 0;
};
const auto old = test.input_utf32[i];
test.input_utf32[i] = surrogate;
ASSERT_TRUE(test(procedure));
test.input_utf32[i] = old;
}
}
}
TEST(convert_fails_if_input_too_large) {
uint32_t seed{1234};
simdutf::tests::helpers::RandomInt generator(0x110000, 0xffffffff, seed);
const size_t size = 64;
transcode_utf32_to_utf16_test_base test(LE, []() { return '*'; }, size + 32);
for (size_t j = 0; j < 1000; j++) {
uint32_t wrong_value = generator();
for (size_t i = 0; i < size; i++) {
auto procedure = [&implementation, &i](const char32_t *utf32, size_t size,
char16_t *utf16) -> size_t {
simdutf::result res =
implementation.convert_utf32_to_utf16le_with_errors(utf32, size,
utf16);
ASSERT_EQUAL(res.error, simdutf::error_code::TOO_LARGE);
ASSERT_EQUAL(res.count, i);
return 0;
};
auto old = test.input_utf32[i];
test.input_utf32[i] = wrong_value;
ASSERT_TRUE(test(procedure));
test.input_utf32[i] = old;
}
}
}
TEST_MAIN
|