1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
#include "simdutf.h"
#include <array>
#include <memory>
#include <tests/helpers/transcode_test_base.h>
#include <tests/helpers/random_int.h>
#include <tests/helpers/test.h>
namespace {
std::array<size_t, 7> input_size{7, 16, 12, 64, 67, 128, 256};
using simdutf::tests::helpers::transcode_utf32_to_utf8_test_base;
} // namespace
TEST(convert_pure_ASCII) {
size_t counter = 0;
auto generator = [&counter]() -> uint32_t { return counter++ & 0x7f; };
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
return implementation.convert_utf32_to_utf8(utf32, size, utf8);
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf8_length_from_utf32(utf32, size);
};
std::array<size_t, 4> input_size{7, 16, 24, 67};
for (size_t size : input_size) {
transcode_utf32_to_utf8_test_base test(generator, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_1_or_2_UTF8_bytes) {
simdutf::tests::helpers::RandomInt random(
0x0000, 0x07ff, seed); // range for 1 or 2 UTF-8 bytes
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
return implementation.convert_utf32_to_utf8(utf32, size, utf8);
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf8_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf8_test_base test(random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_1_or_2_or_3_UTF8_bytes) {
// range for 1, 2 or 3 UTF-8 bytes
simdutf::tests::helpers::RandomIntRanges random(
{{0x0000, 0x007f}, {0x0080, 0x07ff}, {0x0800, 0xd7ff}, {0xe000, 0xffff}},
seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
return implementation.convert_utf32_to_utf8(utf32, size, utf8);
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf8_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf8_test_base test(random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_3_or_4_UTF8_bytes) {
// range for 3 or 4 UTF-8 bytes
simdutf::tests::helpers::RandomIntRanges random(
{{0x0800, 0xd800 - 1}, {0xe000, 0x10ffff}}, seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
return implementation.convert_utf32_to_utf8(utf32, size, utf8);
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf8_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf8_test_base test(random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST(convert_fails_if_there_is_surrogate) {
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
return implementation.convert_utf32_to_utf8(utf32, size, utf8);
};
const size_t size = 64;
transcode_utf32_to_utf8_test_base test([]() { return '*'; }, size + 32);
for (char32_t surrogate = 0xd800; surrogate <= 0xdfff; surrogate++) {
for (size_t i = 0; i < size; i++) {
const auto old = test.input_utf32[i];
test.input_utf32[i] = surrogate;
ASSERT_TRUE(test(procedure));
test.input_utf32[i] = old;
}
}
}
TEST(convert_fails_if_input_too_large) {
uint32_t seed{1234};
simdutf::tests::helpers::RandomInt generator(0x110000, 0xffffffff, seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
return implementation.convert_utf32_to_utf8(utf32, size, utf8);
};
const size_t size = 64;
transcode_utf32_to_utf8_test_base test([]() { return '*'; }, size + 32);
for (size_t j = 0; j < 1000; j++) {
uint32_t wrong_value = generator();
for (size_t i = 0; i < size; i++) {
auto old = test.input_utf32[i];
test.input_utf32[i] = wrong_value;
ASSERT_TRUE(test(procedure));
test.input_utf32[i] = old;
}
}
}
TEST(special_cases) {
const uint32_t utf32[] = {0x0000, 0x0054, 0x0001, 0x0000, 0x0000,
0x0007, 0x005d, 0x027f, 0x001a};
const char expected[] = "\x00\x54\x01\x00\x00\x07\x5d\xc9\xbf\x1a";
size_t utf8len =
implementation.utf8_length_from_utf32((const char32_t *)utf32, 9);
std::unique_ptr<char[]> utf8(new char[utf8len]);
size_t utf8size = implementation.convert_utf32_to_utf8(
(const char32_t *)utf32, 9, utf8.get());
for (size_t i = 0; i < utf8len; i++) {
ASSERT_EQUAL(utf8[i], expected[i]);
}
ASSERT_EQUAL(utf8size, utf8len);
}
TEST_MAIN
|