1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
#include "simdutf.h"
#include <array>
#include <memory>
#include <vector>
#include <tests/helpers/transcode_test_base.h>
#include <tests/helpers/random_int.h>
#include <tests/helpers/test.h>
namespace {
std::array<size_t, 7> input_size{7, 16, 12, 64, 67, 128, 256};
using simdutf::tests::helpers::transcode_utf32_to_utf8_test_base;
} // namespace
#if !SIMDUTF_IS_BIG_ENDIAN
TEST(issue_convert_utf32_to_utf8_with_errors_1b8034ed546f4bf7) {
alignas(4) const unsigned char data[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0xf6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd5,
0xd5, 0xd5, 0xd5, 0xd8, 0x00, 0xe2, 0x00, 0xda, 0x59, 0xdc, 0x00, 0x00};
constexpr size_t data_len_bytes = sizeof(data);
constexpr size_t data_len = data_len_bytes / sizeof(char32_t);
const auto validation1 = implementation.validate_utf32_with_errors(
(const char32_t *)data, data_len);
ASSERT_EQUAL(validation1.count, 11);
ASSERT_EQUAL(validation1.error, simdutf::error_code::TOO_LARGE);
const bool validation2 =
implementation.validate_utf32((const char32_t *)data, data_len);
ASSERT_EQUAL(validation1.error == simdutf::error_code::SUCCESS, validation2);
const auto outlen =
implementation.utf8_length_from_utf32((const char32_t *)data, data_len);
std::vector<char> output(outlen);
const auto r = implementation.convert_utf32_to_utf8_with_errors(
(const char32_t *)data, data_len, output.data());
ASSERT_EQUAL(r.error, simdutf::error_code::TOO_LARGE);
ASSERT_EQUAL(r.count, 11);
}
TEST(issue_convert_utf32_to_utf8_with_errors_cbf29ce484222315) {
const unsigned char data[] = {
0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x80, 0x20, 0x00, 0x00, 0x00,
0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x20, 0x00, 0x00, 0x00, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20};
constexpr std::size_t data_len_bytes = sizeof(data);
constexpr std::size_t data_len = data_len_bytes / sizeof(char32_t);
std::vector<char> output(4 * data_len);
const auto r = implementation.convert_utf32_to_utf8_with_errors(
(const char32_t *)data, data_len, output.data());
/*
got return [count=10, error=TOO_LARGE] from implementation icelake
got return [count=10, error=TOO_LARGE] from implementation haswell
got return [count=16, error=TOO_LARGE] from implementation westmere
got return [count=10, error=TOO_LARGE] from implementation fallbackend
errormessage
*/
ASSERT_EQUAL(r.count, 10);
ASSERT_EQUAL(r.error, simdutf::error_code::TOO_LARGE);
}
#endif
TEST(convert_pure_ASCII) {
size_t counter = 0;
auto generator = [&counter]() -> uint32_t { return counter++ & 0x7f; };
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
simdutf::result res =
implementation.convert_utf32_to_utf8_with_errors(utf32, size, utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
return res.count;
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf8_length_from_utf32(utf32, size);
};
std::array<size_t, 4> input_size{7, 16, 24, 67};
for (size_t size : input_size) {
transcode_utf32_to_utf8_test_base test(generator, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_1_or_2_UTF8_bytes) {
simdutf::tests::helpers::RandomInt random(
0x0000, 0x07ff, seed); // range for 1 or 2 UTF-8 bytes
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
simdutf::result res =
implementation.convert_utf32_to_utf8_with_errors(utf32, size, utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
return res.count;
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf8_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf8_test_base test(random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_1_or_2_or_3_UTF8_bytes) {
// range for 1, 2 or 3 UTF-8 bytes
simdutf::tests::helpers::RandomIntRanges random(
{{0x0000, 0x007f}, {0x0080, 0x07ff}, {0x0800, 0xd7ff}, {0xe000, 0xffff}},
seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
simdutf::result res =
implementation.convert_utf32_to_utf8_with_errors(utf32, size, utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
return res.count;
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf8_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf8_test_base test(random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST_LOOP(convert_into_3_or_4_UTF8_bytes) {
// range for 3 or 4 UTF-8 bytes
simdutf::tests::helpers::RandomIntRanges random(
{{0x0800, 0xd800 - 1}, {0xe000, 0x10ffff}}, seed);
auto procedure = [&implementation](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
simdutf::result res =
implementation.convert_utf32_to_utf8_with_errors(utf32, size, utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
return res.count;
};
auto size_procedure = [&implementation](const char32_t *utf32,
size_t size) -> size_t {
return implementation.utf8_length_from_utf32(utf32, size);
};
for (size_t size : input_size) {
transcode_utf32_to_utf8_test_base test(random, size);
ASSERT_TRUE(test(procedure));
ASSERT_TRUE(test.check_size(size_procedure));
}
}
TEST(convert_fails_if_there_is_surrogate) {
const size_t size = 64;
transcode_utf32_to_utf8_test_base test([]() { return '*'; }, size + 32);
for (char32_t surrogate = 0xd800; surrogate <= 0xdfff; surrogate++) {
for (size_t i = 0; i < size; i++) {
auto procedure = [&implementation, &i](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
simdutf::result res =
implementation.convert_utf32_to_utf8_with_errors(utf32, size, utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::SURROGATE);
ASSERT_EQUAL(res.count, i);
return 0;
};
const auto old = test.input_utf32[i];
test.input_utf32[i] = surrogate;
ASSERT_TRUE(test(procedure));
test.input_utf32[i] = old;
}
}
}
TEST(convert_fails_if_input_too_large) {
uint32_t seed{1234};
simdutf::tests::helpers::RandomInt generator(0x110000, 0xffffffff, seed);
const size_t size = 64;
transcode_utf32_to_utf8_test_base test([]() { return '*'; }, size + 32);
for (size_t j = 0; j < 1000; j++) {
uint32_t wrong_value = generator();
for (size_t i = 0; i < size; i++) {
auto procedure = [&implementation, &i](const char32_t *utf32, size_t size,
char *utf8) -> size_t {
simdutf::result res =
implementation.convert_utf32_to_utf8_with_errors(utf32, size, utf8);
ASSERT_EQUAL(res.error, simdutf::error_code::TOO_LARGE);
ASSERT_EQUAL(res.count, i);
return 0;
};
auto old = test.input_utf32[i];
test.input_utf32[i] = wrong_value;
ASSERT_TRUE(test(procedure));
test.input_utf32[i] = old;
}
}
}
TEST(special_cases) {
const uint32_t utf32[] = {0x0000, 0x0054, 0x0001, 0x0000, 0x0000,
0x0007, 0x005d, 0x027f, 0x001a};
const char expected[] = "\x00\x54\x01\x00\x00\x07\x5d\xc9\xbf\x1a";
size_t utf8len =
implementation.utf8_length_from_utf32((const char32_t *)utf32, 9);
std::unique_ptr<char[]> utf8(new char[utf8len]);
simdutf::result res = implementation.convert_utf32_to_utf8_with_errors(
(const char32_t *)utf32, 9, utf8.get());
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
size_t utf8size = res.count;
for (size_t i = 0; i < utf8len; i++) {
ASSERT_EQUAL(utf8[i], expected[i]);
}
ASSERT_EQUAL(utf8size, utf8len);
}
TEST_MAIN
|