File: detect_encodings_tests.cpp

package info (click to toggle)
simdutf 7.7.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,244 kB
  • sloc: cpp: 60,074; ansic: 14,226; python: 3,364; sh: 321; makefile: 12
file content (312 lines) | stat: -rw-r--r-- 10,303 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#include "simdutf.h"

#include <array>
#include <vector>

#include <tests/reference/encode_utf16.h>
#include <tests/helpers/random_int.h>
#include <tests/helpers/random_utf8.h>
#include <tests/helpers/random_utf16.h>
#include <tests/helpers/test.h>
#include <tests/helpers/utf16.h>

namespace {
std::array<size_t, 7> input_size{8, 16, 12, 64, 68, 128, 256};

template <typename Pointer> bool has_bom(Pointer *data, size_t size) {
  return (simdutf::BOM::check_bom(data, size) !=
          simdutf::encoding_type::unspecified);
}

template <typename RandomGenerator>
std::vector<uint8_t> generate_utf8(RandomGenerator random, size_t size) {
  // This is quite ugly workaround, but we expect almost none repeats
  while (true) {
    const auto generated = random.generate(size);
    if (!has_bom(generated.data(), generated.size())) {
      return generated;
    }
  }
}

template <typename RandomGenerator>
std::vector<char16_t> generate_utf16_le(RandomGenerator random, size_t size) {
  // This is quite ugly workaround, but we expect almost none repeats
  while (true) {
    const auto generated = random.generate_le(size);
    if (!has_bom(reinterpret_cast<const char *>(generated.data()),
                 generated.size())) {
      return generated;
    }
  }
}

template <typename RandomGenerator>
std::vector<uint16_t> generate_u16(RandomGenerator &random, size_t count) {
  std::vector<uint16_t> result;
  result.reserve(count);

  union {
    uint16_t word[2];
    char string[4];
  } first;

  static_assert(sizeof(first) == 4, "union got an unexpected size");

  // Make sure our random data does not start with a BOM marker.
  do {
    first.word[0] = random();
    first.word[1] = random();
  } while (has_bom(first.string, 4));

  result.push_back(first.word[0]);
  result.push_back(first.word[1]);
  for (size_t i = 2; i < count; i++) {
    result.push_back(random());
  }

  return result;
}

template <typename RandomGenerator>
std::vector<uint32_t> generate_u32(RandomGenerator &random, size_t count) {
  std::vector<uint32_t> result;
  result.reserve(count);

  union {
    uint32_t word;
    char string[4];
  } first;

  static_assert(sizeof(first) == 4, "union got an unexpected size");

  // Make sure our random data does not start with a BOM marker.
  do {
    first.word = random();
  } while (has_bom(first.string, 4));

  result.push_back(first.word);
  for (size_t i = 1; i < count; i++) {
    result.push_back(random());
  }

  return result;
}

} // namespace

TEST(issue_519) {
  // implementation icelake gave 0
  // implementation haswell gave 0
  // implementation westmere gave 0
  // implementation fallback gave 1
  std::vector<unsigned char> data{
      32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,  32,  32,
      32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 223, 164, 32,
      32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,  32,  32,
      32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,  32,  32,
  };
  const auto r =
      implementation.detect_encodings((const char *)data.data(), data.size());
  ASSERT_EQUAL(r, 1);
}

TEST(issue_516) {
  std::vector<unsigned char> data{0x20, 0xd8, 0x00, 0x00};
  const auto r =
      implementation.detect_encodings((const char *)data.data(), data.size());
  ASSERT_EQUAL(r, 0);
}

TEST(issue818) {
  std::string data = "\xEF\xBB\xBF";
  const auto r = simdutf::BOM::check_bom(data.data(), data.size());
  ASSERT_EQUAL(r, simdutf::encoding_type::UTF8);
}

TEST(boommmmm) {
  const char *utf8_bom = "\xef\xbb\xbf";
  const char *utf16be_bom = "\xfe\xff";
  const char *utf16le_bom = "\xff\xfe";
  ASSERT_EQUAL(implementation.detect_encodings(utf8_bom, 3),
               simdutf::encoding_type::UTF8);
  ASSERT_EQUAL(implementation.detect_encodings(utf16be_bom, 2),
               simdutf::encoding_type::UTF16_BE);
  ASSERT_EQUAL(implementation.detect_encodings(utf16le_bom, 2),
               simdutf::encoding_type::UTF16_LE);
}

#if !SIMDUTF_IS_BIG_ENDIAN
TEST(issue_627) {
  std::vector<unsigned char> data{
      251, 219, 37,  222, 0,   199, 218, 0,   157, 0,   0, 255, 8,   8,
      8,   8,   227, 8,   8,   8,   8,   8,   8,   255, 0, 0,   248, 0,
      255, 8,   8,   8,   8,   10,  8,   8,   8,   8,   8, 8,   8,   0,
      219, 0,   0,   122, 0,   255, 0,   5,   0,   0,   0, 0,   0,   0,
      0,   255, 243, 159, 129, 172, 1,   219, 37,  222,
  };
  const auto r1 =
      implementation.detect_encodings((const char *)data.data(), data.size());
  ASSERT_EQUAL(r1, 2);

  std::vector<unsigned char> data2{
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 219,
  };
  const auto r2 =
      implementation.detect_encodings((const char *)data2.data(), data2.size());
  ASSERT_EQUAL(r2, 0);
}
#endif

TEST_LOOP(pure_utf8_ASCII) {
  simdutf::tests::helpers::random_utf8 random(seed, 1, 0, 0, 0);

  for (size_t size : input_size) {
    const auto generated = generate_utf8(random, size);
    auto expected =
        simdutf::encoding_type::UTF8 | simdutf::encoding_type::UTF16_LE;
    auto actual = implementation.detect_encodings(
        reinterpret_cast<const char *>(generated.data()), size);
    ASSERT_EQUAL(actual, expected);
  }
}

TEST_LOOP(pure_utf16_ASCII) {
  simdutf::tests::helpers::RandomInt random(0, 127, seed);

  for (size_t size : input_size) {
    const auto generated = generate_u16(random, size / 2);
    auto expected =
        simdutf::encoding_type::UTF8 | simdutf::encoding_type::UTF16_LE;
    auto actual = implementation.detect_encodings(
        reinterpret_cast<const char *>(generated.data()), size);
    ASSERT_TRUE((actual & expected) ==
                expected); // Must be at least UTF8 and UTF16_LE.
  }
}

TEST_LOOP(pure_utf32_ASCII) {
  simdutf::tests::helpers::RandomInt random(0, 0x7f, seed);

  for (size_t size : input_size) {
    const auto generated = generate_u32(random, size / 4);
    auto expected = simdutf::encoding_type::UTF8 |
                    simdutf::encoding_type::UTF16_LE |
                    simdutf::encoding_type::UTF32_LE;
    auto actual = implementation.detect_encodings(
        reinterpret_cast<const char *>(generated.data()), size);
    ASSERT_TRUE((actual & expected) ==
                expected); // Must be at least UTF8 and UTF16_LE and UTF32_LE.
  }
}

#if 0 // XXX
TEST_LOOP(no_utf8_bytes_no_surrogates) {
  simdutf::tests::helpers::RandomIntRanges random(
      {{0x007f, 0xd800 - 1}, {0xe000, 0xffff}}, seed);

  for (size_t size : input_size) {
    auto generated = generate_u32(random, size / 4);
    if (!simdutf::match_system(simdutf::endianness::LITTLE)) {
        for (auto& val: generated) {
            val = ((val & 0xff) << 8) | (val >> 8);
        }
    }

    auto expected =
        simdutf::encoding_type::UTF16_LE | simdutf::encoding_type::UTF32_LE;
    auto actual = implementation.detect_encodings(
        reinterpret_cast<const char *>(generated.data()), size);
    ASSERT_EQUAL((actual & expected),
                 expected); // Must be at least UTF16_LE and UTF32_LE.
  }
}
#endif

TEST_LOOP(two_utf8_bytes) {
  simdutf::tests::helpers::random_utf8 random(seed, 0, 1, 0, 0);

  for (size_t size : input_size) {
    const auto generated = generate_utf8(random, size);
    auto expected =
        simdutf::encoding_type::UTF8 | simdutf::encoding_type::UTF16_LE;
    auto actual = implementation.detect_encodings(
        reinterpret_cast<const char *>(generated.data()), size);
    if (actual != expected) {
      if ((actual & simdutf::encoding_type::UTF8) == 0) {
        puts("failed to detect valid UTF-8.");
      }
      if ((actual & simdutf::encoding_type::UTF16_LE) == 0) {
        puts("failed to detect valid UTF-16LE.");
      }
    }
    ASSERT_TRUE((actual & expected) ==
                expected); // Must be at least UTF8 and UTF16_LE.
  }
}

TEST_LOOP(utf_16_surrogates) {
  simdutf::tests::helpers::random_utf16 random(seed, 0, 1);

  for (size_t size : input_size) {
    const auto generated = generate_utf16_le(random, size / 2);
    auto expected = simdutf::encoding_type::UTF16_LE;
    auto actual = implementation.detect_encodings(
        reinterpret_cast<const char *>(generated.data()), size);
    ASSERT_TRUE((actual & expected) == expected); // Must be at least UTF16_LE.
  }
}

TEST_LOOP(utf32_surrogates) {
  simdutf::tests::helpers::RandomInt random_prefix(0x10000, 0x10ffff, seed);
  simdutf::tests::helpers::RandomInt random_suffix(0xd800, 0xdfff, seed);

  for (size_t size : input_size) {
    std::vector<uint32_t> generated;
    for (unsigned int i = 0; i < size / 4; i++) {
      generated.push_back((random_prefix() & 0xffff0000) + random_suffix());
    }
    auto expected = simdutf::encoding_type::UTF32_LE;
    auto actual = implementation.detect_encodings(
        reinterpret_cast<const char *>(generated.data()), size);
    ASSERT_TRUE((actual & expected) == expected); // Must be at least UTF32_LE.
  }
}

TEST_LOOP(edge_surrogate) {
  simdutf::tests::helpers::RandomInt random(0x10000, 0x10ffff, seed);

  const size_t size = 512;
  std::vector<uint16_t> generated(size / 2, 0);
  unsigned int i = 31;
  while (i + 32 < (size / 2) - 1) {
    char16_t W1;
    char16_t W2;
    ASSERT_EQUAL(simdutf::tests::reference::utf16::encode(random(), W1, W2), 2);
    generated[i + 0] = to_utf16le(W1);
    generated[i + 1] = to_utf16le(W2);
    i += 32;
  }
  auto expected = simdutf::encoding_type::UTF16_LE;
  auto actual = implementation.detect_encodings(
      reinterpret_cast<const char *>(generated.data()), size);
  ASSERT_TRUE((actual & expected) == expected); // Must be at least UTF16_LE.
}

TEST_LOOP(tail_utf8) {
  simdutf::tests::helpers::random_utf8 random(seed, 0, 0, 1, 0);
  std::array<size_t, 5> multiples_three{12, 54, 66, 126, 252};
  for (size_t size : multiples_three) {
    const auto generated = generate_utf8(random, size);
    auto expected =
        simdutf::encoding_type::UTF8 | simdutf::encoding_type::UTF16_LE;
    auto actual = implementation.detect_encodings(
        reinterpret_cast<const char *>(generated.data()), size);
    ASSERT_TRUE((actual & expected) ==
                expected); // Must be at least UTF8 and UTF16_LE.
  }
}

TEST_MAIN