1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
#include "simdutf.h"
#include <array>
#include <vector>
#include <tests/helpers/random_utf16.h>
#include <tests/helpers/test.h>
#include <tests/helpers/utf16.h>
TEST_LOOP(validate_utf16be_returns_true_for_valid_input_single_words) {
simdutf::tests::helpers::random_utf16 generator{seed, 1, 0};
const auto utf16{generator.generate_be(512, seed)};
simdutf::result res = implementation.validate_utf16be_with_errors(
reinterpret_cast<const char16_t *>(utf16.data()), utf16.size());
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
ASSERT_EQUAL(res.count, utf16.size());
}
TEST_LOOP(validate_utf16be_returns_true_for_valid_input_surrogate_pairs_short) {
simdutf::tests::helpers::random_utf16 generator{seed, 0, 1};
const auto utf16{generator.generate_be(8)};
const simdutf::result res = implementation.validate_utf16be_with_errors(
reinterpret_cast<const char16_t *>(utf16.data()), utf16.size());
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
ASSERT_EQUAL(res.count, utf16.size());
}
TEST_LOOP(validate_utf16be_returns_true_for_valid_input_surrogate_pairs) {
simdutf::tests::helpers::random_utf16 generator{seed, 0, 1};
const auto utf16{generator.generate_be(512)};
const simdutf::result res = implementation.validate_utf16be_with_errors(
reinterpret_cast<const char16_t *>(utf16.data()), utf16.size());
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
ASSERT_EQUAL(res.count, utf16.size());
}
// mixed = either 16-bit or 32-bit codewords
TEST(validate_utf16be_returns_true_for_valid_input_mixed) {
uint32_t seed{1234};
simdutf::tests::helpers::random_utf16 generator{seed, 1, 1};
const auto utf16{generator.generate_be(512)};
const simdutf::result res = implementation.validate_utf16be_with_errors(
reinterpret_cast<const char16_t *>(utf16.data()), utf16.size());
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
ASSERT_EQUAL(res.count, utf16.size());
}
TEST(validate_utf16be_returns_true_for_empty_string) {
const char16_t *buf = (char16_t *)"";
simdutf::result res = implementation.validate_utf16be_with_errors(
reinterpret_cast<const char16_t *>(buf), 0);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
ASSERT_EQUAL(res.count, 0);
}
TEST(provoke_integer_wraparound_in_icelake) {
// this is to prove signed integer wraparound in the icelake implementation
unsigned char cleaned_crash[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20};
unsigned int cleaned_crash_len = 62;
ASSERT_EQUAL(
reinterpret_cast<std::uintptr_t>(cleaned_crash) % alignof(char16_t), 0);
const auto size = cleaned_crash_len / sizeof(char16_t);
auto r = simdutf::validate_utf16be_with_errors(
(const char16_t *)cleaned_crash, size);
ASSERT_EQUAL(r.error, simdutf::error_code::SUCCESS);
}
// The first word must not be in range [0xDC00 .. 0xDFFF]
/*
2.2 Decoding UTF-16
[...]
1) If W1 < 0xD800 or W1 > 0xDFFF, the character value U is the value
of W1. Terminate.
2) Determine if W1 is between 0xD800 and 0xDBFF. If not, the sequence
is in error [...]
*/
TEST_LOOP(
validate_utf16be_returns_false_when_input_has_wrong_first_word_value) {
simdutf::tests::helpers::random_utf16 generator{seed, 1, 0};
auto utf16{generator.generate_be(128)};
const size_t len = utf16.size();
for (char16_t wrong_value = 0xdc00; wrong_value <= 0xdfff; wrong_value++) {
for (size_t i = 0; i < utf16.size(); i++) {
const char16_t old = utf16[i];
utf16[i] = to_utf16be(wrong_value);
const simdutf::result res = implementation.validate_utf16be_with_errors(
reinterpret_cast<const char16_t *>(utf16.data()), utf16.size());
ASSERT_EQUAL(res.error, simdutf::error_code::SURROGATE);
ASSERT_EQUAL(res.count, i);
utf16[i] = old;
}
}
}
/*
RFC-2781:
3) [..] if W2 is not between 0xDC00 and 0xDFFF, the sequence is in error.
Terminate.
*/
TEST(validate_utf16be_returns_false_when_input_has_wrong_second_word_value) {
uint32_t seed{1234};
simdutf::tests::helpers::random_utf16 generator{seed, 1, 0};
auto utf16{generator.generate_be(128)};
const size_t len = utf16.size();
const std::array<char16_t, 5> sample_wrong_second_word{0x0000, 0x0010, 0xffdb,
0x00e0, 0xffff};
const char16_t valid_surrogate_W1 = to_utf16be(0xd800);
for (char16_t W2 : sample_wrong_second_word) {
for (size_t i = 0; i < utf16.size() - 1; i++) {
const char16_t old_W1 = utf16[i + 0];
const char16_t old_W2 = utf16[i + 1];
utf16[i + 0] = valid_surrogate_W1;
utf16[i + 1] = to_utf16be(W2);
simdutf::result res = implementation.validate_utf16be_with_errors(
reinterpret_cast<const char16_t *>(utf16.data()), utf16.size());
ASSERT_EQUAL(res.error, simdutf::error_code::SURROGATE);
ASSERT_EQUAL(res.count, i);
utf16[i + 0] = old_W1;
utf16[i + 1] = old_W2;
}
}
}
/*
RFC-2781:
3) If there is no W2 (that is, the sequence ends with W1) [...]
the sequence is in error. Terminate.
*/
TEST(validate_utf16be_returns_false_when_input_is_truncated) {
const char16_t valid_surrogate_W1 = to_utf16be(0xd800);
uint32_t seed{1234};
simdutf::tests::helpers::random_utf16 generator{seed, 1, 0};
for (size_t size = 1; size < 128; size++) {
auto utf16{generator.generate_be(128)};
const size_t len = utf16.size();
utf16[size - 1] = valid_surrogate_W1;
simdutf::result res = implementation.validate_utf16be_with_errors(
reinterpret_cast<const char16_t *>(utf16.data()), utf16.size());
ASSERT_EQUAL(res.error, simdutf::error_code::SURROGATE);
ASSERT_EQUAL(res.count, size - 1);
}
}
TEST_MAIN
|