File: validate_utf16le_basic_tests.cpp

package info (click to toggle)
simdutf 7.7.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,244 kB
  • sloc: cpp: 60,074; ansic: 14,226; python: 3,364; sh: 321; makefile: 12
file content (229 lines) | stat: -rw-r--r-- 6,819 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#include "simdutf.h"

#include <array>
#include <fstream>
#include <memory>

#include <tests/helpers/random_utf16.h>
#include <tests/helpers/test.h>
#include <tests/helpers/utf16.h>

TEST(issue92) {
  char16_t input[] = u"\u5d00\u0041\u0041\u0041\u0041\u0041\u0041\u0041\u0041"
                     u"\u0041\u0041\u0041\u0041\u0041\u0041\u0041\u0041\u0041"
                     u"\u0041\u0041\u0041\u0041\u0041\u0041";
  size_t strlen = sizeof(input) / sizeof(char16_t);
  to_utf16le_inplace(input, strlen);

  ASSERT_TRUE(implementation.validate_utf16le(input, strlen));
  ASSERT_EQUAL(implementation.utf8_length_from_utf16le(input, strlen),
               2 + strlen);
  size_t size =
      implementation.utf8_length_from_utf16le(input, strlen); // should be 26.
  std::unique_ptr<char[]> output_buffer{new char[size]};
  size_t measured_size = implementation.convert_valid_utf16le_to_utf8(
      input, strlen, output_buffer.get());
  ASSERT_EQUAL(measured_size, size);
}

TEST_LOOP(validate_utf16le_ascii) {
  simdutf::tests::helpers::random_utf16 generator{seed, 1, 0};
  auto utf16{generator.generate_le(512, seed)};
  generator.to_ascii_le(utf16);
  ASSERT_TRUE(
      implementation.validate_utf16le_as_ascii(utf16.data(), utf16.size()));
  utf16[utf16.size() / 2] = 0xC0C0;
  ASSERT_FALSE(
      implementation.validate_utf16le_as_ascii(utf16.data(), utf16.size()));
}

TEST_LOOP(validate_utf16le_returns_true_for_valid_input_single_words) {
  simdutf::tests::helpers::random_utf16 generator{seed, 1, 0};
  const auto utf16{generator.generate_le(512, seed)};

  ASSERT_TRUE(implementation.validate_utf16le(
      reinterpret_cast<const char16_t *>(utf16.data()), utf16.size()));
}

TEST_LOOP(validate_utf16le_returns_true_for_valid_input_surrogate_pairs_short) {
  simdutf::tests::helpers::random_utf16 generator{seed, 0, 1};
  const auto utf16{generator.generate_le(8)};

  ASSERT_TRUE(implementation.validate_utf16le(
      reinterpret_cast<const char16_t *>(utf16.data()), utf16.size()));
}

TEST_LOOP(validate_utf16le_returns_true_for_valid_input_surrogate_pairs) {
  simdutf::tests::helpers::random_utf16 generator{seed, 0, 1};
  const auto utf16{generator.generate_le(512)};

  ASSERT_TRUE(implementation.validate_utf16le(
      reinterpret_cast<const char16_t *>(utf16.data()), utf16.size()));
}

// mixed = either 16-bit or 32-bit codewords
TEST(validate_utf16le_returns_true_for_valid_input_mixed) {
  uint32_t seed{1234};
  simdutf::tests::helpers::random_utf16 generator{seed, 1, 1};
  const auto utf16{generator.generate_le(512)};

  ASSERT_TRUE(implementation.validate_utf16le(
      reinterpret_cast<const char16_t *>(utf16.data()), utf16.size()));
}

TEST(validate_utf16le_returns_true_for_empty_string) {
  const char16_t *buf = (char16_t *)"";

  ASSERT_TRUE(implementation.validate_utf16le(buf, 0));
}

// The first word must not be in range [0xDC00 .. 0xDFFF]
/*
2.2 Decoding UTF-16

   [...]

   1) If W1 < 0xD800 or W1 > 0xDFFF, the character value U is the value
      of W1. Terminate.

   2) Determine if W1 is between 0xD800 and 0xDBFF. If not, the sequence
      is in error [...]
*/
TEST_LOOP(
    validate_utf16le_returns_false_when_input_has_wrong_first_word_value) {
  simdutf::tests::helpers::random_utf16 generator{seed, 1, 0};
  auto utf16{generator.generate_le(128)};
  const size_t len = utf16.size();

  for (char16_t wrong_value = 0xdc00; wrong_value <= 0xdfff; wrong_value++) {
    for (size_t i = 0; i < utf16.size(); i++) {
      const char16_t old = utf16[i];
      utf16[i] = to_utf16le(wrong_value);

      ASSERT_FALSE(implementation.validate_utf16le(utf16.data(), len));

      utf16[i] = old;
    }
  }
}

/*
 RFC-2781:

 3) [..] if W2 is not between 0xDC00 and 0xDFFF, the sequence is in error.
    Terminate.
*/
TEST(validate_utf16le_returns_false_when_input_has_wrong_second_word_value) {
  uint32_t seed{1234};
  simdutf::tests::helpers::random_utf16 generator{seed, 1, 0};
  auto utf16{generator.generate_le(128)};
  const size_t len = utf16.size();
  const std::array<char16_t, 5> sample_wrong_second_word{0x0000, 0x1000, 0xdbff,
                                                         0xe000, 0xffff};
  const char16_t valid_surrogate_W1 = to_utf16le(0xd800);
  for (char16_t W2 : sample_wrong_second_word) {
    for (size_t i = 0; i < utf16.size() - 1; i++) {
      const char16_t old_W1 = utf16[i + 0];
      const char16_t old_W2 = utf16[i + 1];

      utf16[i + 0] = valid_surrogate_W1;
      utf16[i + 1] = to_utf16le(W2);
      ASSERT_FALSE(implementation.validate_utf16le(utf16.data(), len));

      utf16[i + 0] = old_W1;
      utf16[i + 1] = old_W2;
    }
  }
}

/*
 RFC-2781:

 3) If there is no W2 (that is, the sequence ends with W1) [...]
    the sequence is in error. Terminate.
*/
TEST(validate_utf16le_returns_false_when_input_is_truncated) {
  const char16_t valid_surrogate_W1 = to_utf16le(0xd800);
  uint32_t seed{1234};
  simdutf::tests::helpers::random_utf16 generator{seed, 1, 0};
  for (size_t size = 1; size < 128; size++) {
    auto utf16{generator.generate_le(128)};
    const size_t len = utf16.size();

    utf16[size - 1] = valid_surrogate_W1;

    ASSERT_FALSE(implementation.validate_utf16le(utf16.data(), len));
  }
}

TEST(validate_utf16le_extensive_tests) {
#ifdef RUN_IN_SPIKE_SIMULATOR
  printf("skipping, cannot be run under Spike");
  return;
#endif
  const std::string path{"validate_utf16_testcases.txt"};
  std::ifstream file{path};
  if (not file) {
    printf("skipping, file '%s' cannot be open", path.c_str());
    return;
  }

  const uint16_t V = to_utf16le(0xfaea);
  const uint16_t L = to_utf16le(0xd852);
  const uint16_t H = to_utf16le(0xde12);

  constexpr size_t len = 32;
  char16_t buf[len];

  long lineno = 0;
  while (file) {
    std::string line;
    std::getline(file, line);
    lineno += 1;
    if (line.empty() or line[0] == '#')
      continue;

    // format: [TF][VLH]{16}
    bool valid = false;
    switch (line[0]) {
    case 'T':
      valid = true;
      break;
    case 'F':
      valid = false;
      break;
    default:
      throw std::invalid_argument(
          "Error at line #" + std::to_string(lineno) +
          ": the first character must be either 'T' or 'F'");
    }

    // prepare input
    for (size_t i = 0; i < len; i++) {
      buf[i] = V;
    }

    for (size_t i = 1; i < line.size(); i++) {
      switch (line[i]) {
      case 'L':
        buf[i - 1] = L;
        break;
      case 'H':
        buf[i - 1] = H;
        break;
      case 'V':
        buf[i - 1] = V;
        break;
      default:
        throw std::invalid_argument(
            "Error at line #" + std::to_string(lineno) +
            ": allowed characters are 'L', 'H' and 'V'");
      }
    }

    // check
    ASSERT_EQUAL(implementation.validate_utf16le(buf, len), valid);
  }
}

TEST_MAIN