1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
#include "simdutf.h"
#include <tests/helpers/random_utf8.h>
#include <tests/helpers/test.h>
TEST(validate_utf8_with_errors_cbf29ce4842223f0) {
const unsigned char data[] = {
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xff};
constexpr std::size_t data_len_bytes = sizeof(data);
constexpr std::size_t data_len = data_len_bytes / sizeof(char);
const auto validation1 =
implementation.validate_utf8_with_errors((const char *)data, data_len);
/*
got return [count=64, error=SUCCESS] from implementation icelake
got return [count=63, error=HEADER_BITS] from implementation haswell
got return [count=63, error=HEADER_BITS] from implementation westmere
got return [count=63, error=HEADER_BITS] from implementation fallback
*/
ASSERT_EQUAL(validation1.count, 63);
ASSERT_EQUAL(validation1.error, simdutf::error_code::HEADER_BITS);
}
// https://github.com/nodejs/node/issues/48995
TEST(node48995) {
const char bad[1] = {(char)0x80};
size_t length = 1;
simdutf::result res = implementation.validate_utf8_with_errors(bad, length);
ASSERT_TRUE(res.error);
}
TEST(copyright) {
const char good[2] = {'\xC2', '\xA9'};
size_t length = 2;
simdutf::result res = implementation.validate_utf8_with_errors(good, length);
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
}
TEST_LOOP(no_error) {
simdutf::tests::helpers::random_utf8 generator{seed, 1, 1, 1, 1};
const auto utf8{generator.generate(512, seed)};
simdutf::result res = implementation.validate_utf8_with_errors(
reinterpret_cast<const char *>(utf8.data()), utf8.size());
ASSERT_EQUAL(res.error, simdutf::error_code::SUCCESS);
ASSERT_EQUAL(res.count, utf8.size());
}
TEST_LOOP(header_bits_error) {
simdutf::tests::helpers::random_utf8 generator{seed, 1, 1, 1, 1};
auto utf8{generator.generate(512, seed)};
for (unsigned int i = 0; i < 512; i++) {
if ((utf8[i] & 0b11000000) != 0b10000000) { // Only process leading bytes
const unsigned char old = utf8[i];
utf8[i] = uint8_t(0b11111000);
simdutf::result res = implementation.validate_utf8_with_errors(
reinterpret_cast<const char *>(utf8.data()), utf8.size());
ASSERT_EQUAL(res.error, simdutf::error_code::HEADER_BITS);
ASSERT_EQUAL(res.count, i);
utf8[i] = old;
}
}
}
TEST_LOOP(too_short_error) {
simdutf::tests::helpers::random_utf8 generator{seed, 1, 1, 1, 1};
auto utf8{generator.generate(512, seed)};
int leading_byte_pos = 0;
for (int i = 0; i < 512; i++) {
if ((utf8[i] & 0b11000000) ==
0b10000000) { // Only process continuation bytes by making them leading
// bytes
const unsigned char old = utf8[i];
utf8[i] = uint8_t(0b11100000);
simdutf::result res = implementation.validate_utf8_with_errors(
reinterpret_cast<const char *>(utf8.data()), utf8.size());
ASSERT_EQUAL(res.error, simdutf::error_code::TOO_SHORT);
ASSERT_EQUAL(res.count, static_cast<unsigned>(leading_byte_pos));
utf8[i] = old;
} else {
leading_byte_pos = i;
}
}
}
TEST_LOOP(too_long_error) {
simdutf::tests::helpers::random_utf8 generator{seed, 1, 1, 1, 1};
auto utf8{generator.generate(512, seed)};
for (unsigned int i = 1; i < 512; i++) {
if (((utf8[i] & 0b11000000) !=
0b10000000)) { // Only process leading bytes by making them
// continuation bytes
const unsigned char old = utf8[i];
utf8[i] = uint8_t(0b10000000);
simdutf::result res = implementation.validate_utf8_with_errors(
reinterpret_cast<const char *>(utf8.data()), utf8.size());
ASSERT_EQUAL(res.error, simdutf::error_code::TOO_LONG);
ASSERT_EQUAL(res.count, i);
utf8[i] = old;
}
}
}
TEST_LOOP(overlong_error) {
simdutf::tests::helpers::random_utf8 generator{seed, 1, 1, 1, 1};
auto utf8{generator.generate(512, seed)};
for (unsigned int i = 1; i < 512; i++) {
if (utf8[i] >= 0b11000000) { // Only non-ASCII leading bytes can be overlong
const unsigned char old = utf8[i];
const unsigned char second_old = utf8[i + 1];
if ((old & 0b11100000) == 0b11000000) { // two-bytes case, change to a
// value less or equal than 0x7f
utf8[i] = 0b11000000;
} else if ((old & 0b11110000) ==
0b11100000) { // three-bytes case, change to a value less or
// equal than 0x7ff
utf8[i] = 0b11100000;
utf8[i + 1] = utf8[i + 1] & 0b11011111;
} else { // four-bytes case, change to a value less or equal than 0xffff
utf8[i] = 0b11110000;
utf8[i + 1] = utf8[i + 1] & 0b11001111;
}
simdutf::result res = implementation.validate_utf8_with_errors(
reinterpret_cast<const char *>(utf8.data()), utf8.size());
ASSERT_EQUAL(res.error, simdutf::error_code::OVERLONG);
ASSERT_EQUAL(res.count, i);
utf8[i] = old;
utf8[i + 1] = second_old;
}
}
}
TEST_LOOP(too_large_error) {
simdutf::tests::helpers::random_utf8 generator{seed, 1, 1, 1, 1};
auto utf8{generator.generate(512, seed)};
for (unsigned int i = 1; i < 512; i++) {
if ((utf8[i] & 0b11111000) ==
0b11110000) { // Can only have too large error in 4-bytes case
utf8[i] += ((utf8[i] & 0b100) == 0b100)
? 0b10
: 0b100; // Make sure we get too large error and not header
// bits error
simdutf::result res = implementation.validate_utf8_with_errors(
reinterpret_cast<const char *>(utf8.data()), utf8.size());
ASSERT_EQUAL(res.error, simdutf::error_code::TOO_LARGE);
ASSERT_EQUAL(res.count, i);
utf8[i] -= 0b100;
}
}
}
TEST_LOOP(surrogate_error) {
simdutf::tests::helpers::random_utf8 generator{seed, 1, 1, 1, 1};
auto utf8{generator.generate(512, seed)};
for (unsigned int i = 1; i < 512; i++) {
if ((utf8[i] & 0b11110000) ==
0b11100000) { // Can only have surrogate error in 3-bytes case
const unsigned char old = utf8[i];
const unsigned char second_old = utf8[i + 1];
utf8[i] = 0b11101101; // Leading byte is always the same
for (int s = 0x8; s < 0xf;
s++) { // Modify second byte to create a surrogate codepoint
utf8[i + 1] = (utf8[i + 1] & 0b11000011) | (s << 2);
simdutf::result res = implementation.validate_utf8_with_errors(
reinterpret_cast<const char *>(utf8.data()), utf8.size());
ASSERT_EQUAL(res.error, simdutf::error_code::SURROGATE);
ASSERT_EQUAL(res.count, i);
}
utf8[i] = old;
utf8[i + 1] = second_old;
}
}
}
TEST_MAIN
|