File: s4u-actor-create.cpp

package info (click to toggle)
simgrid 4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 38,980 kB
  • sloc: cpp: 123,583; ansic: 66,779; python: 8,358; java: 6,406; fortran: 6,079; f90: 5,123; xml: 4,587; sh: 2,337; perl: 1,436; makefile: 105; lisp: 49; javascript: 7; sed: 6
file content (128 lines) | stat: -rw-r--r-- 5,929 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/* Copyright (c) 2006-2025. The SimGrid Team. All rights reserved.          */

/* This program is free software; you can redistribute it and/or modify it
 * under the terms of the license (GNU LGPL) which comes with this package. */

/* This example shows how to declare and start your actors.
 *
 * The first step is to declare the code of your actors (what they do exactly does not matter to this example) and then
 * you ask SimGrid to start your actors. There is three ways of doing so:
 *  - Directly, by instantiating your actor as parameter to Actor::create()
 *  - By first registering your actors before instantiating it
 *  - Through the deployment file.
 *
 * This example shows all these solutions, even if you obviously should use only one of these solutions to start your
 * actors. The most advised solution is to use a deployment file, as it creates a clear separation between your
 * application and the settings to test it. This is a better scientific methodology. Actually, starting an actor with
 * Actor::create() is mostly useful to start an actor from another actor.
 */

#include <simgrid/s4u.hpp>
#include <string>
namespace sg4 = simgrid::s4u;

// This declares a logging channel so that XBT_INFO can be used later
XBT_LOG_NEW_DEFAULT_CATEGORY(s4u_actor_create, "The logging channel used in this example");

/* Our first class of actors is simply implemented with a function, that takes a single string as parameter.
 *
 * Later, this actor class is instantiated within the simulation.
 */
static void receiver(const std::string& mailbox_name)
{
  sg4::Mailbox* mailbox = sg4::Mailbox::by_name(mailbox_name);

  XBT_INFO("Hello s4u, I'm ready to get any message you'd want on %s", mailbox->get_cname());

  auto msg1 = mailbox->get_unique<std::string>();
  auto msg2 = mailbox->get_unique<std::string>();
  auto msg3 = mailbox->get_unique<std::string>();
  XBT_INFO("I received '%s', '%s' and '%s'", msg1->c_str(), msg2->c_str(), msg3->c_str());
  XBT_INFO("I'm done. See you.");
}

/* Our second class of actors is also a function */
static void forwarder(int argc, char** argv)
{
  xbt_assert(argc >= 3, "Actor forwarder requires 2 parameters, but got only %d", argc - 1);
  sg4::Mailbox* in             = sg4::Mailbox::by_name(argv[1]);
  sg4::Mailbox* out            = sg4::Mailbox::by_name(argv[2]);
  auto* msg                    = in->get<std::string>();
  XBT_INFO("Forward '%s'.", msg->c_str());
  out->put(msg, msg->size());
}

/* Declares a third class of actors which sends a message to the mailbox 'mb42'.
 * The sent message is what was passed as parameter on creation (or 'GaBuZoMeu' by default)
 *
 * Later, this actor class is instantiated twice in the simulation.
 */
class Sender {
public:
  std::string mbox  = "mb42";
  std::string msg = "GaBuZoMeu";
  explicit Sender() = default; /* Sending the default message */
  explicit Sender(const std::string& arg) : msg(arg) { /* Sending the specified message */}
  explicit Sender(std::vector<std::string> args)
  {
    /* This constructor is used when we start the actor from the deployment file */
    /* args[0] is the actor's name, so the first parameter is args[1] */

    xbt_assert(args.size() >= 3, "The sender is expecting 2 parameters from the deployment file but got %zu",
               args.size() - 1);
    msg  = args[1];
    mbox = args[2];
  }
  void operator()() const /* This is the main code of the actor */
  {
    XBT_INFO("Hello s4u, I have something to send");
    sg4::Mailbox* mailbox = sg4::Mailbox::by_name(mbox);

    mailbox->put(new std::string(msg), msg.size());
    XBT_INFO("I'm done. See you.");
  }
};

/* Here comes the main function of your program */
int main(int argc, char** argv)
{
  /* When your program starts, you have to first start a new simulation engine, as follows */
  sg4::Engine e(&argc, argv);

  /* Then you should load a platform file, describing your simulated platform */
  e.load_platform(argc > 1 ? argv[1] : "../../platforms/small_platform.xml");

  /* And now you have to ask SimGrid to actually start your actors.
   *
   * The easiest way to do so is to implement the behavior of your actor in a single function,
   * as we do here for the receiver actors. This function can take any kind of parameters, as
   * long as the last parameters of Actor::create() match what your function expects.
   */
  e.add_actor("receiver", e.host_by_name("Fafard"), &receiver, "mb42");

  /* If your actor is getting more complex, you probably want to implement it as a class instead,
   * as we do here for the sender actors. The main behavior goes into operator()() of the class.
   *
   * You can then directly start your actor, as follows: */
  e.add_actor("sender1", e.host_by_name("Tremblay"), Sender());
  /* If you want to pass parameters to your class, that's very easy: just use your constructors */
  e.add_actor("sender2", e.host_by_name("Jupiter"), Sender("GloubiBoulga"));

  /* But starting actors directly is considered as a bad experimental habit, since it ties the code
   * you want to test with the experimental scenario. Starting your actors from an external deployment
   * file in XML ensures that you can test your code in several scenarios without changing the code itself.
   *
   * For that, you first need to register your function or your actor as follows.
   * Actor classes must have a (std::vector<std::string>) constructor,
   * and actor functions must be of type int(*)(int argc, char**argv). */
  e.register_actor<Sender>("sender"); // The sender class is passed as a template parameter here
  e.register_function("forwarder", &forwarder);
  /* Once actors and functions are registered, just load the deployment file */
  e.load_deployment(argc > 2 ? argv[2] : "s4u-actor-create_d.xml");

  /* Once every actors are started in the engine, the simulation can start */
  e.run();

  /* Once the simulation is done, the program is ended */
  return 0;
}