1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
|
/*************************************************************************
* *
* N A S P A R A L L E L B E N C H M A R K S 3.3 *
* *
* I S *
* *
*************************************************************************
* *
* This benchmark is part of the NAS Parallel Benchmark 3.3 suite. *
* It is described in NAS Technical Report 95-020. *
* *
* Permission to use, copy, distribute and modify this software *
* for any purpose with or without fee is hereby granted. We *
* request, however, that all derived work reference the NAS *
* Parallel Benchmarks 3.3. This software is provided "as is" *
* without express or implied warranty. *
* *
* Information on NPB 3.3, including the technical report, the *
* original specifications, source code, results and information *
* on how to submit new results, is available at: *
* *
* http://www.nas.nasa.gov/Software/NPB *
* *
* Send comments or suggestions to npb@nas.nasa.gov *
* Send bug reports to npb-bugs@nas.nasa.gov *
* *
* NAS Parallel Benchmarks Group *
* NASA Ames Research Center *
* Mail Stop: T27A-1 *
* Moffett Field, CA 94035-1000 *
* *
* E-mail: npb@nas.nasa.gov *
* Fax: (650) 604-3957 *
* *
*************************************************************************
* *
* Author: M. Yarrow *
* H. Jin *
* *
*************************************************************************/
#include "smpi/mpi.h"
#include "nas_common.h"
#include <stdlib.h>
#include <stdio.h>
#include "simgrid/instr.h" //TRACE_
char class;
int nprocs;
int total_keys_log2;
int max_key_log_2;
int num_bucket_log_2;
int min_procs=1;
/* NOTE: THIS CODE CANNOT BE RUN ON ARBITRARILY LARGE NUMBERS OF PROCESSORS. THE LARGEST VERIFIED NUMBER IS 1024.
* INCREASE max_procs AT YOUR PERIL */
int max_procs=1024;
int total_keys;
int max_key;
int num_buckets;
int num_keys;
long size_of_buffers;
#define MAX_ITERATIONS 10
#define TEST_ARRAY_SIZE 5
/* Typedef: if necessary, change the size of int here by changing the int type to, say, long */
typedef int INT_TYPE;
typedef long INT_TYPE2;
#define MP_KEY_TYPE MPI_INT
typedef struct {
/* MPI properties: */
int my_rank, comm_size;
/* Some global info */
INT_TYPE *key_buff_ptr_global, /* used by full_verify to get */
total_local_keys, /* copies of rank info */
total_lesser_keys;
int passed_verification;
/* These are the three main arrays. See SIZE_OF_BUFFERS def above */
INT_TYPE *key_array, *key_buff1, *key_buff2,
*bucket_size, /* Top 5 elements for */
*bucket_size_totals, /* part. ver. vals */
*bucket_ptrs, *process_bucket_distrib_ptr1, *process_bucket_distrib_ptr2;
int send_count[1024], recv_count[1024], send_displ[1024], recv_displ[1024];
/* Partial verif info */
INT_TYPE2 test_index_array[TEST_ARRAY_SIZE],
test_rank_array[TEST_ARRAY_SIZE];
} global_data;
const INT_TYPE2
S_test_index_array[TEST_ARRAY_SIZE] = {48427,17148,23627,62548,4431},
S_test_rank_array[TEST_ARRAY_SIZE] = {0,18,346,64917,65463},
W_test_index_array[TEST_ARRAY_SIZE] = {357773,934767,875723,898999,404505},
W_test_rank_array[TEST_ARRAY_SIZE] = {1249,11698,1039987,1043896,1048018},
A_test_index_array[TEST_ARRAY_SIZE] = {2112377,662041,5336171,3642833,4250760},
A_test_rank_array[TEST_ARRAY_SIZE] = {104,17523,123928,8288932,8388264},
B_test_index_array[TEST_ARRAY_SIZE] = {41869,812306,5102857,18232239,26860214},
B_test_rank_array[TEST_ARRAY_SIZE] = {33422937,10244,59149,33135281,99},
C_test_index_array[TEST_ARRAY_SIZE] = {44172927,72999161,74326391,129606274,21736814},
C_test_rank_array[TEST_ARRAY_SIZE] = {61147,882988,266290,133997595,133525895},
D_test_index_array[TEST_ARRAY_SIZE] = {1317351170,995930646,1157283250,1503301535,1453734525},
D_test_rank_array[TEST_ARRAY_SIZE] = {1,36538729,1978098519,2145192618,2147425337};
void full_verify( global_data* gd );
/************ returns parallel random number seq seed ************/
/*
* Create a random number sequence of total length nn residing on np number of processors. Each processor will
* therefore have a subsequence of length nn/np. This routine returns that random number which is the first random
* number for the subsequence belonging to processor rank kn, and which is used as seed for proc kn ran # gen.
*/
static double find_my_seed( int kn, /* my processor rank, 0<=kn<=num procs */
int np, /* np = num procs */
long nn, /* total num of ran numbers, all procs */
double s, /* Ran num seed, for ex.: 314159265.00 */
double a ) /* Ran num gen mult, try 1220703125.00 */
{
long i;
double t1,t2,an;
long mq,nq,kk,ik;
nq = nn / np;
for( mq=0; nq>1; mq++,nq/=2);
t1 = a;
for( i=1; i<=mq; i++ )
t2 = randlc( &t1, &t1 );
an = t1;
kk = kn;
t1 = s;
t2 = an;
for( i=1; i<=100; i++ ){
ik = kk / 2;
if( 2 * ik != kk )
randlc( &t1, &t2 );
if( ik == 0 )
break;
randlc( &t2, &t2 );
kk = ik;
}
return t1;
}
static void create_seq( global_data* gd, double seed, double a )
{
double x;
int i, k;
k = max_key/4;
for (i=0; i<num_keys; i++){
x = randlc(&seed, &a);
x += randlc(&seed, &a);
x += randlc(&seed, &a);
x += randlc(&seed, &a);
gd->key_array[i] = k*x;
}
}
void full_verify( global_data* gd )
{
MPI_Status status;
MPI_Request request;
INT_TYPE i, j;
INT_TYPE k, last_local_key;
/* Now, finally, sort the keys: */
for( i=0; i<gd->total_local_keys; i++ )
gd->key_array[--gd->key_buff_ptr_global[gd->key_buff2[i]]- gd->total_lesser_keys] = gd->key_buff2[i];
last_local_key = (gd->total_local_keys<1)? 0 : (gd->total_local_keys-1);
/* Send largest key value to next processor */
if( gd->my_rank > 0 )
MPI_Irecv( &k, 1, MP_KEY_TYPE, gd->my_rank-1, 1000, MPI_COMM_WORLD, &request );
if( gd->my_rank < gd->comm_size-1 )
MPI_Send( &gd->key_array[last_local_key], 1, MP_KEY_TYPE, gd->my_rank+1, 1000, MPI_COMM_WORLD );
if( gd->my_rank > 0 )
MPI_Wait( &request, &status );
/* Confirm that neighbor's greatest key value is not greater than my least key value */
j = 0;
if( gd->my_rank > 0 && gd->total_local_keys > 0 )
if( k > gd->key_array[0] )
j++;
/* Confirm keys correctly sorted: count incorrectly sorted keys, if any */
for( i=1; i<gd->total_local_keys; i++ )
if( gd->key_array[i-1] > gd->key_array[i] )
j++;
if( j != 0 ) {
printf( "Processor %d: Full_verify: number of keys out of sort: %d\n", gd->my_rank, j );
} else
gd->passed_verification++;
}
static void rank( global_data* gd, int iteration )
{
INT_TYPE i, k;
INT_TYPE shift = max_key_log_2 - num_bucket_log_2;
INT_TYPE key;
INT_TYPE2 bucket_sum_accumulator, j, m;
INT_TYPE local_bucket_sum_accumulator;
INT_TYPE min_key_val, max_key_val;
INT_TYPE *key_buff_ptr;
/* Iteration alteration of keys */
if(gd->my_rank == 0){
gd->key_array[iteration] = iteration;
gd->key_array[iteration+MAX_ITERATIONS] = max_key - iteration;
}
/* Initialize */
for( i=0; i<num_buckets+TEST_ARRAY_SIZE; i++ ){
gd->bucket_size[i] = 0;
gd->bucket_size_totals[i] = 0;
gd->process_bucket_distrib_ptr1[i] = 0;
gd->process_bucket_distrib_ptr2[i] = 0;
}
/* Determine where the partial verify test keys are, load into top of array bucket_size */
for( i=0; i<TEST_ARRAY_SIZE; i++ )
if( (gd->test_index_array[i]/num_keys) == gd->my_rank )
gd->bucket_size[num_buckets+i] = gd->key_array[gd->test_index_array[i] % num_keys];
/* Determine the number of keys in each bucket */
for( i=0; i<num_keys; i++ )
gd->bucket_size[gd->key_array[i] >> shift]++;
/* Accumulative bucket sizes are the bucket pointers */
gd->bucket_ptrs[0] = 0;
for( i=1; i< num_buckets; i++ )
gd->bucket_ptrs[i] = gd->bucket_ptrs[i-1] + gd->bucket_size[i-1];
/* Sort into appropriate bucket */
for( i=0; i<num_keys; i++ ) {
key = gd->key_array[i];
gd->key_buff1[gd->bucket_ptrs[key >> shift]++] = key;
}
/* Get the bucket size totals for the entire problem. These will be used to determine the redistribution of keys */
MPI_Allreduce(gd->bucket_size, gd->bucket_size_totals, num_buckets+TEST_ARRAY_SIZE, MP_KEY_TYPE, MPI_SUM,
MPI_COMM_WORLD);
/* Determine Redistibution of keys: accumulate the bucket size totals till this number surpasses num_keys (which the
* average number of keys per processor). Then all keys in these buckets go to processor 0.
Continue accumulating again until supassing 2*num_keys. All keys in these buckets go to processor 1, etc. This
algorithm guarantees that all processors have work ranking; no processors are left idle.
The optimum number of buckets, however, does not result in as high a degree of load balancing (as even a distribution
of keys as is possible) as is obtained from increasing the number of buckets, but more buckets results in more
computation per processor so that the optimum number of buckets turns out to be 1024 for machines tested.
Note that process_bucket_distrib_ptr1 and ..._ptr2 hold the bucket number of first and last bucket which each
processor will have after the redistribution is done.
*/
bucket_sum_accumulator = 0;
local_bucket_sum_accumulator = 0;
gd->send_displ[0] = 0;
gd->process_bucket_distrib_ptr1[0] = 0;
for( i=0, j=0; i<num_buckets; i++ ) {
bucket_sum_accumulator += gd->bucket_size_totals[i];
local_bucket_sum_accumulator += gd->bucket_size[i];
if( bucket_sum_accumulator >= (j+1)*num_keys ) {
gd->send_count[j] = local_bucket_sum_accumulator;
if( j != 0 ){
gd->send_displ[j] = gd->send_displ[j-1] + gd->send_count[j-1];
gd->process_bucket_distrib_ptr1[j] = gd->process_bucket_distrib_ptr2[j-1]+1;
}
gd->process_bucket_distrib_ptr2[j++] = i;
local_bucket_sum_accumulator = 0;
}
}
/* When nprocs approaching num_buckets, it is highly possible that the last few processors don't get any buckets.
* So, we need to set counts properly in this case to avoid any fallouts. */
while( j < gd->comm_size ) {
gd->send_count[j] = 0;
gd->process_bucket_distrib_ptr1[j] = 1;
j++;
}
/* This is the redistribution section: first find out how many keys
each processor will send to every other processor: */
MPI_Alltoall( gd->send_count, 1, MPI_INT, gd->recv_count, 1, MPI_INT, MPI_COMM_WORLD );
/* Determine the receive array displacements for the buckets */
gd->recv_displ[0] = 0;
for( i=1; i<gd->comm_size; i++ )
gd->recv_displ[i] = gd->recv_displ[i-1] + gd->recv_count[i-1];
/* Now send the keys to respective processors */
MPI_Alltoallv(gd->key_buff1, gd->send_count, gd->send_displ, MP_KEY_TYPE, gd->key_buff2, gd->recv_count,
gd->recv_displ, MP_KEY_TYPE, MPI_COMM_WORLD );
/* The starting and ending bucket numbers on each processor are multiplied by the interval size of the buckets to
* obtain the smallest possible min and greatest possible max value of any key on each processor
*/
min_key_val = gd->process_bucket_distrib_ptr1[gd->my_rank] << shift;
max_key_val = ((gd->process_bucket_distrib_ptr2[gd->my_rank] + 1) << shift)-1;
/* Clear the work array */
for( i=0; i<max_key_val-min_key_val+1; i++ )
gd->key_buff1[i] = 0;
/* Determine the total number of keys on all other processors holding keys of lesser value */
m = 0;
for( k=0; k<gd->my_rank; k++ )
for( i= gd->process_bucket_distrib_ptr1[k]; i<=gd->process_bucket_distrib_ptr2[k]; i++ )
m += gd->bucket_size_totals[i]; /* m has total # of lesser keys */
/* Determine total number of keys on this processor */
j = 0;
for( i= gd->process_bucket_distrib_ptr1[gd->my_rank]; i<=gd->process_bucket_distrib_ptr2[gd->my_rank]; i++ )
j += gd->bucket_size_totals[i]; /* j has total # of local keys */
/* Ranking of all keys occurs in this section: */
/* shift it backwards so no subtractions are necessary in loop */
key_buff_ptr = gd->key_buff1 - min_key_val;
/* In this section, the keys themselves are used as their own indexes to determine how many of each there are: their
individual population */
for( i=0; i<j; i++ )
key_buff_ptr[gd->key_buff2[i]]++; /* Now they have individual key population */
/* To obtain ranks of each key, successively add the individual key population, not forgetting the total of lesser
* keys, m.
NOTE: Since the total of lesser keys would be subtracted later in verification, it is no longer added to the first
key population here, but still needed during the partial verify test. This is to ensure that 32-bit key_buff can
still be used for class D. */
/* key_buff_ptr[min_key_val] += m; */
for( i=min_key_val; i<max_key_val; i++ )
key_buff_ptr[i+1] += key_buff_ptr[i];
/* This is the partial verify test section */
/* Observe that test_rank_array vals are shifted differently for different cases */
for( i=0; i<TEST_ARRAY_SIZE; i++ ){
k = gd->bucket_size_totals[i+num_buckets]; /* Keys were hidden here */
if( min_key_val <= k && k <= max_key_val ){
/* Add the total of lesser keys, m, here */
INT_TYPE2 key_rank = key_buff_ptr[k-1] + m;
int failed = 0;
switch( class ){
case 'S':
if( i <= 2 ) {
if( key_rank != gd->test_rank_array[i]+iteration )
failed = 1;
else
gd->passed_verification++;
} else {
if( key_rank != gd->test_rank_array[i]-iteration )
failed = 1;
else
gd->passed_verification++;
}
break;
case 'W':
if( i < 2 ){
if( key_rank != gd->test_rank_array[i]+(iteration-2) )
failed = 1;
else
gd->passed_verification++;
} else {
if( key_rank != gd->test_rank_array[i]-iteration )
failed = 1;
else
gd->passed_verification++;
}
break;
case 'A':
if( i <= 2 ){
if( key_rank != gd->test_rank_array[i]+(iteration-1) )
failed = 1;
else
gd->passed_verification++;
} else {
if( key_rank != gd->test_rank_array[i]-(iteration-1) )
failed = 1;
else
gd->passed_verification++;
}
break;
case 'B':
if( i == 1 || i == 2 || i == 4 ) {
if( key_rank != gd->test_rank_array[i]+iteration )
failed = 1;
else
gd->passed_verification++;
} else {
if( key_rank != gd->test_rank_array[i]-iteration )
failed = 1;
else
gd->passed_verification++;
}
break;
case 'C':
if( i <= 2 ){
if( key_rank != gd->test_rank_array[i]+iteration )
failed = 1;
else
gd->passed_verification++;
} else {
if( key_rank != gd->test_rank_array[i]-iteration )
failed = 1;
else
gd->passed_verification++;
}
break;
case 'D':
if( i < 2 ) {
if( key_rank != gd->test_rank_array[i]+iteration )
failed = 1;
else
gd->passed_verification++;
} else {
if( key_rank != gd->test_rank_array[i]-iteration )
failed = 1;
else
gd->passed_verification++;
}
break;
}
if( failed == 1 )
printf( "Failed partial verification: iteration %d, processor %d, test key %d\n",
iteration, gd->my_rank, (int)i );
}
}
/* Make copies of rank info for use by full_verify: these variables in rank are local; making them global slows down
* the code, probably since they cannot be made register by compiler */
if( iteration == MAX_ITERATIONS ) {
gd->key_buff_ptr_global = key_buff_ptr;
gd->total_local_keys = j;
gd->total_lesser_keys = 0; /* no longer set to 'm', see note above */
}
}
int main( int argc, char **argv )
{
int i, iteration, itemp;
double timecounter, maxtime;
global_data* gd = malloc(sizeof(global_data));
/* Initialize MPI */
MPI_Init( &argc, &argv );
MPI_Comm_rank( MPI_COMM_WORLD, &gd->my_rank );
MPI_Comm_size( MPI_COMM_WORLD, &gd->comm_size );
get_info(argc, argv, &nprocs, &class);
check_info(IS, nprocs, class);
/* Initialize the verification arrays if a valid class */
for( i=0; i<TEST_ARRAY_SIZE; i++ )
switch( class ) {
case 'S':
total_keys_log2 = 16;
max_key_log_2 = 11;
num_bucket_log_2 = 9;
max_procs = 128;
gd->test_index_array[i] = S_test_index_array[i];
gd->test_rank_array[i] = S_test_rank_array[i];
break;
case 'A':
total_keys_log2 = 23;
max_key_log_2 = 19;
num_bucket_log_2 = 10;
gd->test_index_array[i] = A_test_index_array[i];
gd->test_rank_array[i] = A_test_rank_array[i];
break;
case 'W':
total_keys_log2 = 20;
max_key_log_2 = 16;
num_bucket_log_2 = 10;
gd->test_index_array[i] = W_test_index_array[i];
gd->test_rank_array[i] = W_test_rank_array[i];
break;
case 'B':
total_keys_log2 = 25;
max_key_log_2 = 21;
num_bucket_log_2 = 10;
gd->test_index_array[i] = B_test_index_array[i];
gd->test_rank_array[i] = B_test_rank_array[i];
break;
case 'C':
total_keys_log2 = 27;
max_key_log_2 = 23;
num_bucket_log_2 = 10;
gd->test_index_array[i] = C_test_index_array[i];
gd->test_rank_array[i] = C_test_rank_array[i];
break;
case 'D':
total_keys_log2 = 29;
max_key_log_2 = 27;
num_bucket_log_2 = 10;
min_procs = 4;
gd->test_index_array[i] = D_test_index_array[i];
gd->test_rank_array[i] = D_test_rank_array[i];
break;
};
total_keys = (1 << total_keys_log2);
max_key = (1 << max_key_log_2);
num_buckets = (1 << num_bucket_log_2);
num_keys = (total_keys/nprocs*min_procs);
/* On larger number of processors, since the keys are (roughly) gaussian distributed, the first and last processor
* sort keys in a large interval, requiring array sizes to be larger. Note that for large NUM_PROCS, num_keys is,
* however, a small number The required array size also depends on the bucket size used. The following values are
* validated for the 1024-bucket setup. */
if (nprocs < 256)
size_of_buffers = 3*num_keys/2;
else if (nprocs < 512)
size_of_buffers = 5*num_keys/2;
else if (nprocs < 1024)
size_of_buffers = 4*num_keys/2;
else
size_of_buffers = 13*num_keys/2;
gd->key_array = (INT_TYPE*)malloc(size_of_buffers*sizeof(INT_TYPE));
gd->key_buff1 = (INT_TYPE*)malloc(size_of_buffers*sizeof(INT_TYPE));
gd->key_buff2 = (INT_TYPE*)malloc(size_of_buffers*sizeof(INT_TYPE));
gd->bucket_size = (INT_TYPE*)malloc((num_buckets+TEST_ARRAY_SIZE)*sizeof(INT_TYPE)); /* Top 5 elements for */
gd->bucket_size_totals = (INT_TYPE*)malloc((num_buckets+TEST_ARRAY_SIZE)*sizeof(INT_TYPE)); /* part. ver. vals */
gd->bucket_ptrs = (INT_TYPE*)malloc(num_buckets*sizeof(INT_TYPE));
gd->process_bucket_distrib_ptr1 = (INT_TYPE*)malloc((num_buckets+TEST_ARRAY_SIZE)*sizeof(INT_TYPE));
gd->process_bucket_distrib_ptr2 = (INT_TYPE*)malloc((num_buckets+TEST_ARRAY_SIZE)*sizeof(INT_TYPE));
// int send_count[max_procs], recv_count[max_procs],
// send_displ[max_procs], recv_displ[max_procs];
/* Printout initial NPB info */
if( gd->my_rank == 0 ){
printf( "\n\n NAS Parallel Benchmarks 3.3 -- IS Benchmark\n\n" );
printf( " Size: %ld (class %c)\n", (long)total_keys*min_procs, class);
printf( " Iterations: %d\n", MAX_ITERATIONS );
printf( " Number of processes: %d\n",gd->comm_size );
}
/* Check that actual and compiled number of processors agree */
if( gd->comm_size != nprocs) {
if( gd->my_rank == 0 )
printf( "\n ERROR: compiled for %d processes\n"
" Number of active processes: %d\n"
" Exiting program!\n\n", nprocs, gd->comm_size );
MPI_Finalize();
exit( 1 );
}
/* Check to see whether total number of processes is within bounds.
This could in principle be checked in setparams.c, but it is more convenient to do it here */
if( gd->comm_size < min_procs || gd->comm_size > max_procs){
if( gd->my_rank == 0 )
printf( "\n ERROR: number of processes %d not within range %d-%d"
"\n Exiting program!\n\n", gd->comm_size, min_procs, max_procs);
MPI_Finalize();
exit( 1 );
}
/* Generate random number sequence and subsequent keys on all procs */
create_seq(gd, find_my_seed( gd->my_rank, gd->comm_size, 4*(long)total_keys*min_procs,
314159265.00, /* Random number gen seed */
1220703125.00 ), /* Random number gen mult */
1220703125.00 ); /* Random number gen mult */
/* Do one iteration for free (i.e., untimed) to guarantee initialization of
all data and code pages and respective tables */
rank(gd, 1 );
/* Start verification counter */
gd->passed_verification = 0;
if( gd->my_rank == 0 && class != 'S' ) printf( "\n iteration\n" );
/* Initialize timer */
timer_clear(0);
/* Start timer */
timer_start(0);
char smpi_category[100];
snprintf (smpi_category, 100, "%d", gd->my_rank);
TRACE_smpi_set_category (smpi_category);
/* This is the main iteration */
for( iteration=1; iteration<=MAX_ITERATIONS; iteration++ ) {
if( gd->my_rank == 0 && class != 'S' ) printf( " %d\n", iteration );
rank(gd, iteration );
}
TRACE_smpi_set_category (NULL);
/* Stop timer, obtain time for processors */
timer_stop(0);
timecounter = timer_read(0);
/* End of timing, obtain maximum time of all processors */
MPI_Reduce( &timecounter, &maxtime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD );
/* This tests that keys are in sequence: sorting of last ranked key seq occurs here, but is an untimed operation */
full_verify(gd);
/* Obtain verification counter sum */
itemp =gd->passed_verification;
MPI_Reduce( &itemp, &gd->passed_verification, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD );
/* The final printout */
if( gd->my_rank == 0 ) {
if( gd->passed_verification != 5*MAX_ITERATIONS + gd->comm_size )
gd->passed_verification = 0;
c_print_results("IS", class, (int)(total_keys), min_procs, 0, MAX_ITERATIONS, nprocs, gd->comm_size, maxtime,
((double) (MAX_ITERATIONS)*total_keys*min_procs)/maxtime/1000000., "keys ranked",
gd->passed_verification);
}
MPI_Finalize();
free(gd);
return 0;
}
|