File: Rdhist.R

package info (click to toggle)
simgrid 4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 39,192 kB
  • sloc: cpp: 124,913; ansic: 66,744; python: 8,560; java: 6,773; fortran: 6,079; f90: 5,123; xml: 4,587; sh: 2,194; perl: 1,436; makefile: 111; lisp: 49; javascript: 7; sed: 6
file content (266 lines) | stat: -rw-r--r-- 11,763 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#-------------------------------------------------------------------------------
# Copyright (c) 2012 University of Illinois, NCSA.
# All rights reserved. This program and the accompanying materials
# are made available under the terms of the
# University of Illinois/NCSA Open Source License
# which accompanies this distribution, and is available at
# http://opensource.ncsa.illinois.edu/license.html
##' Variable-width (dagonally cut) histogram
##'
##' When constructing a histogram, it is common to make all bars the same width.
##' One could also choose to make them all have the same area.
##' These two options have complementary strengths and weaknesses; the equal-width histogram oversmooths in regions of high density, and is poor at identifying sharp peaks; the equal-area histogram oversmooths in regions of low density, and so does not identify outliers.
##' We describe a compromise approach which avoids both of these defects. We regard the histogram as an exploratory device, rather than as an estimate of a density.
##' @name dhist
##' @title Diagonally Cut Histogram
##' @param x is a numeric vector (the data)
##' @param a is the scaling factor, default is 5 * IQR
##' @param nbins is the number of bins, default is assigned by the Stuges method
##' @param rx is the range used for the left of the left-most bin to the right of the right-most bin
##' @param eps used to set artificial bound on min width / max height of bins as described in Denby and Mallows (2009) on page 24.
##' @param xlab is label for the x axis
##' @param plot = TRUE produces the plot, FALSE returns the heights, breaks and counts
##' @param lab.spikes = TRUE labels the \% of data in the spikes
##' @return list with two elements, heights of length n and breaks of length n+1 indicating the heights and break points of the histogram bars.
##' @author Lorraine Denby, Colin Mallows
##' @references Lorraine Denby, Colin Mallows. Journal of Computational and Graphical Statistics. March 1, 2009, 18(1): 21-31. doi:10.1198/jcgs.2009.0002.
dhist <- function(x, a=5*iqr(x), nbins=nclass.Sturges(x),
                  rx = range(x,na.rm = TRUE), eps=.15, xlab = "x", plot = TRUE,lab.spikes = TRUE){
  if(is.character(nbins))
    nbins <- switch(casefold(nbins), sturges = nclass.Sturges(x), fd = nclass.FD(x), scott = nclass.scott(x),
                    stop("Nclass method not recognized"))
  else if(is.function(nbins))
    nbins <- nbins(x)

  x <- sort(x[!is.na(x)])
  if(a == 0)
    a <- diff(range(x))/100000000
  if(a != 0 & a != Inf) {
    n <- length(x)
    h <- (rx[2] + a - rx[1])/nbins
    ybr <- rx[1] + h * (0:nbins)
    yupper <- x + (a * (1:n))/n
                                        # upper and lower corners in the ecdf
    ylower <- yupper - a/n

    cmtx <- cbind(cut(yupper, breaks = ybr), cut(yupper, breaks = ybr, left.include = TRUE), cut(ylower, breaks = ybr),
                  cut(ylower, breaks = ybr, left.include = TRUE))
    cmtx[1, 3] <- cmtx[1, 4] <- 1
                                        # to replace NAs when default r is used
    cmtx[n, 1] <- cmtx[n, 2] <- nbins
                                        #checksum <- apply(cmtx, 1, sum) %% 4
    checksum <- (cmtx[, 1] + cmtx[, 2] + cmtx[, 3] + cmtx[, 4]) %% 4
                                        # will be 2 for obs. that straddle two bins
    straddlers <- (1:n)[checksum == 2]
                                        # to allow for zero counts
    if(length(straddlers) > 0) {
      counts <- table(c(1:nbins, cmtx[ - straddlers, 1]))
    } else {
      counts <- table(c(1:nbins, cmtx[, 1]))
    }
    counts <- counts - 1

    if(length(straddlers) > 0) {
      for(i in straddlers) {
        binno <- cmtx[i, 1]
        theta <- ((yupper[i] - ybr[binno]) * n)/a
        counts[binno - 1] <- counts[binno - 1] + (1 - theta)
        counts[binno] <- counts[binno] + theta
      }
    }
    xbr <- ybr
    xbr[-1] <- ybr[-1] - (a * cumsum(counts))/n
    spike<-eps*diff(rx)/nbins
    flag.vec<-c(diff(xbr)<spike,F)
    if ( sum(abs(diff(xbr))<=spike) >1) {
      xbr.new<-xbr
      counts.new<-counts
      diff.xbr<-abs(diff(xbr))
      amt.spike<-diff.xbr[length(diff.xbr)]
      for (i in rev(2:length(diff.xbr))) {
        if (diff.xbr[i-1] <= spike&diff.xbr[i] <= spike & !is.na(diff.xbr[i])) {
          amt.spike <- amt.spike+diff.xbr[i-1]
          counts.new[i-1] <- counts.new[i-1]+counts.new[i]
          xbr.new[i] <- NA
          counts.new[i] <- NA
          flag.vec[i-1] <- T
        }
        else amt.spike<-diff.xbr[i-1]
      }
      flag.vec<-flag.vec[!is.na(xbr.new)]
      flag.vec<-flag.vec[-length(flag.vec)]
      counts<-counts.new[!is.na(counts.new)]
      xbr<-xbr.new[!is.na(xbr.new)]

    }
    else flag.vec<-flag.vec[-length(flag.vec)]
    widths <- abs(diff(xbr))
    ## N.B. argument "widths" in barplot must be xbr
    heights <- counts/widths
  }
  bin.size <- length(x)/nbins
  cut.pt <- unique(c(min(x) - abs(min(x))/1000, approx(seq(length(x)), x,
                                                       (1:(nbins - 1)) * bin.size, rule = 2)$y, max(x)))
  aa <- hist(x, breaks = cut.pt, plot = FALSE, probability = TRUE)
  if(a == Inf) {
    heights <- aa$counts
    xbr <- aa$breaks
  }
  amt.height<-3
  q75<-quantile(heights,.75)
  if (sum(flag.vec)!=0) {
    amt<-max(heights[!flag.vec])
    ylim.height<-amt*amt.height
    ind.h<-flag.vec&heights> ylim.height
    flag.vec[heights<ylim.height*(amt.height-1)/amt.height]<-F
    heights[ind.h] <- ylim.height
  }
  amt.txt<-0
  end.y<-(-10000)
  if(plot) {
    barplot(heights, abs(diff(xbr)), space = 0, density = -1, xlab = xlab, plot = TRUE, xaxt = "n",yaxt='n')
    at <- pretty(xbr)
    axis(1, at = at - xbr[1], labels = as.character(at))
    if (lab.spikes) {
      if (sum(flag.vec)>=1) {
        usr<-par('usr')
        for ( i in seq(length(xbr)-1)) {
          if (!flag.vec[i]) {
            amt.txt<-0
            if (xbr[i]-xbr[1]<end.y) amt.txt<-1
          }
          else {
            amt.txt<-amt.txt+1
            end.y<-xbr[i]-xbr[1]+3*par('cxy')[1]
          }
          if (flag.vec[i]) {
            txt<-paste(' ',format(round(counts[i]/
                                        sum(counts)*100)),'%',sep='')
            par(xpd = TRUE)
            text(xbr[i+1]-xbr[1],ylim.height-par('cxy')[2]*(amt.txt-1),txt, adj=0)
          }
        }
      } else print('no spikes or more than one spike')
    }
    invisible(list(heights = heights, xbr = xbr))
  } else {return(list(heights = heights, xbr = xbr,counts=counts))}
}
#==================================================================================================#
##' Calculate interquartile range
##'
##' Calculates the 25th and 75th quantiles given a vector x; used in function \link{dhist}.
##' @name iqr
##' @title Interquartile range
##' @param x vector
##' @return numeric vector of length 2, with the 25th and 75th quantiles of input vector x.
iqr <- function(x){
  return(diff(quantile(x, c(0.25, 0.75), na.rm = TRUE)))
}
##==================================================================================================#
##' Creates empty ggplot object
##'
##' An empty base plot to which layers created by other functions
##' (\code{\link{plot.data}}, \code{\link{plot.prior.density}},
##' \code{\link{plot.posterior.density}}) can be added.
##' @name create.base.plot
##' @title Create Base Plot
##' @return empty ggplot object
##' @export
##' @author David LeBauer
create.base.plot <- function() {
  base.plot <- ggplot()
  return(base.plot)
}
#==================================================================================================#
##' Add data to an existing plot or create a new one from \code{\link{create.base.plot}}
##'
##' Used to add raw data or summary statistics to the plot of a distribution.
##' The height of Y is arbitrary, and can be set to optimize visualization.
##' If SE estimates are available, these will be plotted
##' @name plot.data
##' @title Add data to plot
##' @param trait.data data to be plotted
##' @param base.plot a ggplot object (grob),
##' created by \code{\link{create.base.plot}} if none provided
##' @param ymax maximum height of y
##' @seealso \code{\link{create.base.plot}}
##' @return updated plot object
##' @author David LeBauer
##' @export
##' @examples
##' \dontrun{plot.data(data.frame(Y = c(1, 2), se = c(1,2)), base.plot = NULL, ymax = 10)}
plot.data <- function(trait.data, base.plot = NULL, ymax, color = 'black') {
  if(is.null(base.plot)) base.plot <- create.base.plot()
  n.pts <- nrow(trait.data)
  if(n.pts == 1){
    ymax <- ymax/8
  } else if (n.pts < 5) {
    ymax <- ymax / 4
  } else {
    ymax <- ymax / 2
  }
  y.pts <- seq(0, ymax, length.out = 1 + n.pts)[-1]
  plot.data <- data.frame(x = trait.data$Y, y = y.pts, se = trait.data$se,
                          control = !trait.data$trt == 1 & trait.data$ghs == 1)
  new.plot <- base.plot + geom_point(data = plot.data, aes(x = x, y = y, color = control)) +
                 geom_segment(data = plot.data, aes(x = x - se, y = y, xend = x + se, yend = y, color = control)) +
                     scale_color_manual(values = c('black', 'grey')) + opts(legend_position = "none")
  return(new.plot)
}
##==================================================================================================#
##' Add borders to .. content for \description{} (no empty lines) ..
##'
##' Has ggplot2 display only specified borders, e.g. ("L"-shaped) borders, rather than a rectangle or no border. Note that the order can be significant; for example, if you specify the L border option and then a theme, the theme settings will override the border option, so you need to specify the theme (if any) before the border option, as above.
##' @name theme_border
##' @title Theme border for plot
##' @param type
##' @param colour
##' @param size
##' @param linetype
##' @return adds borders to ggplot as a side effect
##' @author Rudolf Cardinal
##' @author \url{ggplot2 google group}{https://groups.google.com/forum/?fromgroups#!topic/ggplot2/-ZjRE2OL8lE}
##' @examples
##' \dontrun{
##' df = data.frame( x=c(1,2,3), y=c(4,5,6) )
##' ggplot(data=df, aes(x=x, y=y)) + geom_point() + theme_bw() +
##' opts(panel.border = theme_border(c("bottom","left")) )
##' ggplot(data=df, aes(x=x, y=y)) + geom_point() + theme_bw() +
##' opts(panel.border = theme_border(c("b","l")) )
##' }
theme_border <- function(type = c("left", "right", "bottom", "top", "none"), colour = "black", size = 1, linetype = 1){
  type <- match.arg(type, several.ok=TRUE)
  structure(function(x = 0, y = 0, width = 1, height = 1, ...) {
      xlist <- c()
      ylist <- c()
      idlist <- c()
      if ("bottom" %in% type) { # bottom
          xlist <- append(xlist, c(x, x+width))
          ylist <- append(ylist, c(y, y))
          idlist <- append(idlist, c(1,1))
      }
      if ("top" %in% type) { # top
          xlist <- append(xlist, c(x, x+width))
          ylist <- append(ylist, c(y+height, y+height))
          idlist <- append(idlist, c(2,2))
      }
      if ("left" %in% type) { # left
          xlist <- append(xlist, c(x, x))
          ylist <- append(ylist, c(y, y+height))
          idlist <- append(idlist, c(3,3))
      }
      if ("right" %in% type) { # right
          xlist <- append(xlist, c(x+width, x+width))
          ylist <- append(ylist, c(y, y+height))
          idlist <- append(idlist, c(4,4))
      }
      polylineGrob(x=xlist, y=ylist, id=idlist, ..., default.units = "npc",
                   gp=gpar(lwd=size, col=colour, lty=linetype),
                   )
  },
            class = "theme",
            type = "box",
            call = match.call()
            )
}
#==================================================================================================#