File: analysis.org

package info (click to toggle)
simgrid 4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 39,192 kB
  • sloc: cpp: 124,913; ansic: 66,744; python: 8,560; java: 6,773; fortran: 6,079; f90: 5,123; xml: 4,587; sh: 2,194; perl: 1,436; makefile: 111; lisp: 49; javascript: 7; sed: 6
file content (625 lines) | stat: -rw-r--r-- 24,900 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
#+TITLE: Modeling I/O: the realistic way
#+AUTHOR: The SimGrid Team
#+OPTIONS: toc:nil title:nil author:nil num:nil

* Modeling I/O: the realistic way
:PROPERTIES:
:CUSTOM_ID: howto_disk
:END:

** Introduction

 This tutorial presents how to perform faithful IO experiments in
 SimGrid. It is based on the paper "Adding Storage Simulation
 Capacities to the SimGridToolkit: Concepts, Models, and API".

 The paper presents a series of experiments to analyze the performance
 of IO operations (read/write) on different kinds of disks (SATA, SAS,
 SSD). In this tutorial, we present a detailed example of how to
 extract experimental data to simulate: i) performance degradation
 with concurrent operations (Fig. 8 in the paper) and ii) variability
 in IO operations (Fig. 5 to 7).

 - Link for paper: https://hal.inria.fr/hal-01197128
 - Link for data: https://figshare.com/articles/dataset/Companion_of_the_SimGrid_storage_modeling_article/1175156

 *Disclaimer*:
- The purpose of this document is to illustrate how we can
 extract data from experiments and inject on SimGrid. However, the
 data shown on this page may *not* reflect the reality.
- You must run similar experiments on your hardware to get realistic
  data for your context.
- SimGrid has been in active development since the paper release in
  2015, thus the XML description used in the paper may have evolved 
  while MSG was superseeded by S4U since then.

*** Running this tutorial

 A Dockerfile is available in =docs/source/tuto_disk=. It allows you to
 re-run this tutorial. For that, build the image and run the container:
 - =docker build -t tuto_disk .=
 - =docker run -it tuto_disk=

** Analyzing the experimental data
 We start by analyzing and extracting the real data available.
*** Scripts

 We use a special method to create non-uniform histograms to represent
 the noise in IO operations.

 Unable to install the library properly, I copied the important methods
 here.

 Copied from: https://rdrr.io/github/dlebauer/pecan-priors/src/R/plots.R

 #+begin_src R :results output :session *R* :exports none
#' Variable-width (dagonally cut) histogram
#'
#'
#' When constructing a histogram, it is common to make all bars the same width.
#' One could also choose to make them all have the same area.
#' These two options have complementary strengths and weaknesses; the equal-width histogram oversmooths in regions of high density, and is poor at identifying sharp peaks; the equal-area histogram oversmooths in regions of low density, and so does not identify outliers.
#' We describe a compromise approach which avoids both of these defects. We regard the histogram as an exploratory device, rather than as an estimate of a density.
#' @title Diagonally Cut Histogram
#' @param x is a numeric vector (the data)
#' @param a is the scaling factor, default is 5 * IQR
#' @param nbins is the number of bins, default is assigned by the Stuges method
#' @param rx  is the range used for the left of the left-most bin to the right of the right-most bin
#' @param eps used to set artificial bound on min width / max height of bins as described in Denby and Mallows (2009) on page 24.
#' @param xlab is label for the x axis
#' @param plot = TRUE produces the plot, FALSE returns the heights, breaks and counts
#' @param lab.spikes = TRUE labels the \% of data in the spikes
#' @return list with two elements, heights of length n and breaks of length n+1 indicating the heights and break points of the histogram bars.
#' @author Lorraine Denby, Colin Mallows
#' @references Lorraine Denby, Colin Mallows. Journal of Computational and Graphical Statistics. March 1, 2009, 18(1): 21-31. doi:10.1198/jcgs.2009.0002.
 dhist<-function(x, a=5*iqr(x),
                 nbins=nclass.Sturges(x), rx = range(x,na.rm = TRUE),
                 eps=.15, xlab = "x", plot = TRUE,lab.spikes = TRUE)
 {

   if(is.character(nbins))
     nbins <- switch(casefold(nbins),
                     sturges = nclass.Sturges(x),
                     fd = nclass.FD(x),
                     scott = nclass.scott(x),
                     stop("Nclass method not recognized"))
   else if(is.function(nbins))
     nbins <- nbins(x)

   x <- sort(x[!is.na(x)])
   if(a == 0)
     a <- diff(range(x))/100000000
   if(a != 0 & a != Inf) {
     n <- length(x)
     h <- (rx[2] + a - rx[1])/nbins
     ybr <- rx[1] + h * (0:nbins)
     yupper <- x + (a * (1:n))/n
                                         # upper and lower corners in the ecdf
     ylower <- yupper - a/n
                                         #
     cmtx <- cbind(cut(yupper, breaks = ybr), cut(yupper, breaks =
                                 ybr, left.include = TRUE), cut(ylower, breaks = ybr),
                   cut(ylower, breaks = ybr, left.include = TRUE))
     cmtx[1, 3] <- cmtx[1, 4] <- 1
                                         # to replace NAs when default r is used
     cmtx[n, 1] <- cmtx[n, 2] <- nbins
                                         #
                                         #checksum <- apply(cmtx, 1, sum) %% 4
     checksum <- (cmtx[, 1] + cmtx[, 2] + cmtx[, 3] + cmtx[, 4]) %%
     4
                                         # will be 2 for obs. that straddle two bins
     straddlers <- (1:n)[checksum == 2]
                                         # to allow for zero counts
     if(length(straddlers) > 0) {
       counts <- table(c(1:nbins, cmtx[ - straddlers, 1]))
     } else {
       counts <- table(c(1:nbins, cmtx[, 1]))
     }
     counts <- counts - 1
                                         #
     if(length(straddlers) > 0) {
       for(i in straddlers) {
         binno <- cmtx[i, 1]
         theta <- ((yupper[i] - ybr[binno]) * n)/a
         counts[binno - 1] <- counts[binno - 1] + (
                                                   1 - theta)
         counts[binno] <- counts[binno] + theta
       }
     }
     xbr <- ybr
     xbr[-1] <- ybr[-1] - (a * cumsum(counts))/n
     spike<-eps*diff(rx)/nbins
     flag.vec<-c(diff(xbr)<spike,F)
     if ( sum(abs(diff(xbr))<=spike) >1) {
       xbr.new<-xbr
       counts.new<-counts
       diff.xbr<-abs(diff(xbr))
       amt.spike<-diff.xbr[length(diff.xbr)]
       for (i in rev(2:length(diff.xbr))) {
         if (diff.xbr[i-1]<=spike&diff.xbr[i]<=spike&
             !is.na(diff.xbr[i])) {
           amt.spike<-amt.spike+diff.xbr[i-1]
           counts.new[i-1]<-counts.new[i-1]+counts.new[i]
           xbr.new[i]<-NA
           counts.new[i]<-NA
           flag.vec[i-1]<-T
         }
         else amt.spike<-diff.xbr[i-1]
       }
       flag.vec<-flag.vec[!is.na(xbr.new)]
       flag.vec<-flag.vec[-length(flag.vec)]
       counts<-counts.new[!is.na(counts.new)]
       xbr<-xbr.new[!is.na(xbr.new)]

     }
     else flag.vec<-flag.vec[-length(flag.vec)]
     widths <- abs(diff(xbr))
     ## N.B. argument "widths" in barplot must be xbr
     heights <- counts/widths
   }
   bin.size <- length(x)/nbins
   cut.pt <- unique(c(min(x) - abs(min(x))/1000,
                      approx(seq(length(x)), x, (1:(nbins - 1)) * bin.size, rule = 2)$y, max(x)))
   aa <- hist(x, breaks = cut.pt, plot = FALSE, probability = TRUE)
   if(a == Inf) {
     heights <- aa$counts
     xbr <- aa$breaks
   }
   amt.height<-3
   q75<-quantile(heights,.75)
   if (sum(flag.vec)!=0) {
     amt<-max(heights[!flag.vec])
     ylim.height<-amt*amt.height
     ind.h<-flag.vec&heights> ylim.height
     flag.vec[heights<ylim.height*(amt.height-1)/amt.height]<-F
     heights[ind.h] <- ylim.height
   }
   amt.txt<-0
   end.y<-(-10000)
   if(plot) {
     barplot(heights, abs(diff(xbr)), space = 0, density = -1, xlab =
             xlab, plot = TRUE, xaxt = "n",yaxt='n')
     at <- pretty(xbr)
     axis(1, at = at - xbr[1], labels = as.character(at))
     if (lab.spikes) {
       if (sum(flag.vec)>=1) {
         usr<-par('usr')
         for ( i in seq(length(xbr)-1)) {
           if (!flag.vec[i]) {
             amt.txt<-0
             if (xbr[i]-xbr[1]<end.y) amt.txt<-1
           }
           else {
             amt.txt<-amt.txt+1
             end.y<-xbr[i]-xbr[1]+3*par('cxy')[1]
           }
           if (flag.vec[i]) {
             txt<-paste(' ',format(round(counts[i]/
                                         sum(counts)*100)),'%',sep='')
             par(xpd = TRUE)
             text(xbr[i+1]-xbr[1],ylim.height-par('cxy')[2]*(amt.txt-1),txt, adj=0)
           }}
       }
       else print('no spikes or more than one spike')
     }
     invisible(list(heights = heights, xbr = xbr))
   }
   else {
     return(list(heights = heights, xbr = xbr,counts=counts))
   }
 }

#' Calculate interquartile range
#'
#' Calculates the 25th and 75th quantiles given a vector x; used in function \link{dhist}.
#' @title Interquartile range
#' @param x vector
#' @return numeric vector of length 2, with the 25th and 75th quantiles of input vector x.
 iqr<-function(x){
   return(diff(quantile(x, c(0.25, 0.75), na.rm = TRUE)))
 }

 #+end_src

*** Data preparation

 Some initial configurations/list of packages.

 #+begin_src R :results output :session *R* :exports both
 library(jsonlite)
 library(ggplot2)
 library(plyr)
 library(dplyr)
 library(gridExtra)

 IO_INFO = list()
 #+end_src

 This was copied from the =sg_storage_ccgrid15.org= available at the
 figshare of the paper. Before executing this code, please download and
 decompress the appropriate file.

 #+begin_src sh :results output :exports both
 curl -O -J -L "https://ndownloader.figshare.com/files/1928095"
 tar xfz bench.tgz
 #+end_src

 Preparing data for varialiby analysis.

 #+BEGIN_SRC R :session :results output :export none

 clean_up <- function (df, infra){
 names(df) <- c("Hostname","Date","DirectIO","IOengine","IOscheduler","Error","Operation","Jobs","BufferSize","FileSize","Runtime","Bandwidth","BandwidthMin","BandwidthMax","Latency", "LatencyMin", "LatencyMax","IOPS")
 df=subset(df,Error=="0")
 df=subset(df,DirectIO=="1")
 df <- merge(df,infra,by="Hostname")
 df$Hostname = sapply(strsplit(df$Hostname, "[.]"), "[", 1)
 df$HostModel = paste(df$Hostname, df$Model, sep=" - ")
 df$Duration = df$Runtime/1000 # fio outputs runtime in msec, we want to display seconds
 df$Size = df$FileSize/1024/1024
 df=subset(df,Duration!=0.000)
 df$Bwi=df$Duration/df$Size
 df[df$Operation=="read",]$Operation<- "Read"
 df[df$Operation=="write",]$Operation<- "Write"
 return(df)
 }

 grenoble <- read.csv('./bench/grenoble.csv', header=FALSE,sep = ";",
 stringsAsFactors=FALSE)
 luxembourg <- read.csv('./bench/luxembourg.csv', header=FALSE,sep = ";",  stringsAsFactors=FALSE)
 nancy <- read.csv('./bench/nancy.csv', header=FALSE,sep = ";",  stringsAsFactors=FALSE)
 all <- rbind(grenoble,nancy, luxembourg)
 infra <- read.csv('./bench/infra.csv', header=FALSE,sep = ";",  stringsAsFactors=FALSE)
 names(infra) <- c("Hostname","Model","DiskSize")

 all = clean_up(all, infra)
 griffon = subset(all,grepl("^griffon", Hostname))
 griffon$Cluster <-"Griffon (SATA II)"
 edel = subset(all,grepl("^edel", Hostname))
 edel$Cluster<-"Edel (SSD)"

 df = rbind(griffon[griffon$Jobs=="1" & griffon$IOscheduler=="cfq",],
            edel[edel$Jobs=="1" & edel$IOscheduler=="cfq",])
 #Get rid off of 64 Gb disks of Edel as they behave differently (used to be "edel-51")
 df = df[!(grepl("^Edel",df$Cluster) & df$DiskSize=="64 GB"),]
 #+END_SRC

 Preparing data for concurrent analysis.
 #+begin_src R :results output :session *R* :exports both
   dfc = rbind(griffon[griffon$Jobs>1 & griffon$IOscheduler=="cfq",],
              edel[edel$Jobs>1 & edel$IOscheduler=="cfq",])
   dfc2 = rbind(griffon[griffon$Jobs==1 & griffon$IOscheduler=="cfq",],
              edel[edel$Jobs==1 & edel$IOscheduler=="cfq",])
   dfc = rbind(dfc,dfc2[sample(nrow(dfc2),size=200),])

   dd <- data.frame(
         Hostname="??",
         Date = NA, #tmpl$Date,
         DirectIO = NA,
         IOengine = NA,
         IOscheduler = NA,
         Error = 0,
         Operation = NA, #tmpl$Operation,
         Jobs = NA, # #d$nb.of.concurrent.access,
         BufferSize = NA, #d$bs,
         FileSize = NA, #d$size,
         Runtime = NA,
         Bandwidth = NA,
         BandwidthMin = NA,
         BandwidthMax = NA,
         Latency = NA,
         LatencyMin = NA,
         LatencyMax = NA,
         IOPS = NA,
         Model = NA, #tmpl$Model,
         DiskSize = NA, #tmpl$DiskSize,
         HostModel = NA,
         Duration = NA, #d$time,
         Size = NA,
         Bwi = NA,
         Cluster = NA) #tmpl$Cluster)

   dd$Size = dd$FileSize/1024/1024
   dd$Bwi = dd$Duration/dd$Size

   dfc = rbind(dfc, dd)
   # Let's get rid of small files!
   dfc = subset(dfc,Size >= 10)
   # Let's get rid of 64Gb edel disks
   dfc = dfc[!(grepl("^Edel",dfc$Cluster) & dfc$DiskSize=="64 GB"),]

   dfc$TotalSize=dfc$Size * dfc$Jobs
   dfc$BW = (dfc$TotalSize) / dfc$Duration
   dfc = dfc[dfc$BW>=20,] # get rid of one point that is typically an outlier and does not make sense

   dfc$method="lm"
   dfc[dfc$Cluster=="Edel (SSD)"  & dfc$Operation=="Read",]$method="loess"

   dfc[dfc$Cluster=="Edel (SSD)"  & dfc$Operation=="Write" & dfc$Jobs ==1,]$method="lm"
   dfc[dfc$Cluster=="Edel (SSD)"  & dfc$Operation=="Write" & dfc$Jobs ==1,]$method=""

   dfc[dfc$Cluster=="Griffon (SATA II)" & dfc$Operation=="Write",]$method="lm"
   dfc[dfc$Cluster=="Griffon (SATA II)"  & dfc$Operation=="Write" & dfc$Jobs ==1,]$method=""

   dfd = dfc[dfc$Operation=="Write" & dfc$Jobs ==1 &
             (dfc$Cluster %in% c("Griffon (SATA II)", "Edel (SSD)")),]
   dfd = ddply(dfd,c("Cluster","Operation","Jobs","DiskSize"), summarize,
               mean = mean(BW), num = length(BW), sd = sd(BW))
   dfd$BW=dfd$mean
   dfd$ci = 2*dfd$sd/sqrt(dfd$num)

   dfrange=ddply(dfc,c("Cluster","Operation","DiskSize"), summarize,
               max = max(BW))
   dfrange=ddply(dfrange,c("Cluster","DiskSize"), mutate,
               BW = max(max))
   dfrange$Jobs=16

 #+end_src

*** Griffon (SATA)
**** Modeling resource sharing w/ concurrent access

 This figure presents the overall performance of IO operation with
 concurrent access to the disk. Note that the image is different
 from the one in the paper. Probably, we need to further clean the
 available data to obtain exaclty the same results.

 #+begin_src R :results output graphics :file fig/griffon_deg.png :exports both :width 600 :height 400 :session *R*
   ggplot(data=dfc,aes(x=Jobs,y=BW, color=Operation)) + theme_bw() +
     geom_point(alpha=.3) +
     geom_point(data=dfrange, size=0) +
     facet_wrap(Cluster~Operation,ncol=2,scale="free_y")+ # ) + #
     geom_smooth(data=dfc[dfc$method=="loess",], color="black", method=loess,se=TRUE,fullrange=T) +
     geom_smooth(data=dfc[dfc$method=="lm",], color="black", method=lm,se=TRUE) +
     geom_point(data=dfd, aes(x=Jobs,y=BW),color="black",shape=21,fill="white") +
     geom_errorbar(data=dfd, aes(x=Jobs, ymin=BW-ci, ymax=BW+ci),color="black",width=.6) +
     xlab("Number of concurrent operations") + ylab("Aggregated Bandwidth (MiB/s)")  + guides(color=FALSE)  + xlim(0,NA) + ylim(0,NA)

 #+end_src

***** Read
 Getting read data for Griffon from 1 to 15 concurrent reads.

 #+begin_src R :results output :session *R* :exports both
 deg_griffon = dfc %>% filter(grepl("^Griffon", Cluster)) %>% filter(Operation == "Read")
 model = lm(BW~Jobs, data = deg_griffon)
 IO_INFO[["griffon"]][["degradation"]][["read"]] = predict(model,data.frame(Jobs=seq(1,15)))

 toJSON(IO_INFO, pretty = TRUE)
 #+end_src


***** Write

 Same for write operations.

 #+begin_src R :results output :session *R* :exports both
 deg_griffon = dfc %>% filter(grepl("^Griffon", Cluster)) %>% filter(Operation == "Write") %>% filter(Jobs > 2)
 mean_job_1 = dfc %>% filter(grepl("^Griffon", Cluster)) %>% filter(Operation == "Write") %>% filter(Jobs == 1) %>% summarize(mean = mean(BW))
 model = lm(BW~Jobs, data = deg_griffon)
 IO_INFO[["griffon"]][["degradation"]][["write"]] = c(mean_job_1$mean, predict(model,data.frame(Jobs=seq(2,15))))
 toJSON(IO_INFO, pretty = TRUE)
 #+end_src


**** Modeling read/write bandwidth variability

 Fig.5 in the paper presents the noise in the read/write operations in
 the Griffon SATA disk.

 The paper uses regular histogram to illustrate the distribution of the
 effective bandwidth. However, in this tutorial, we use dhist
 (https://rdrr.io/github/dlebauer/pecan-priors/man/dhist.html) to have a
 more precise information over the highly dense areas around the mean.

***** Read
 First, we present the histogram for read operations.
 #+begin_src R :results output graphics :file fig/griffon_read_dhist.png :exports both :width 600 :height 400 :session *R*
 griffon_read = df %>% filter(grepl("^Griffon", Cluster)) %>% filter(Operation == "Read") %>% select(Bwi)
 dhist(1/griffon_read$Bwi)
 #+end_src

 Saving it to be exported in json format.

 #+begin_src R :results output :session *R* :exports both
 griffon_read_dhist = dhist(1/griffon_read$Bwi, plot=FALSE)
 IO_INFO[["griffon"]][["noise"]][["read"]] = c(breaks=list(griffon_read_dhist$xbr), heights=list(unclass(griffon_read_dhist$heights)))
 IO_INFO[["griffon"]][["read_bw"]] = mean(1/griffon_read$Bwi)
 toJSON(IO_INFO, pretty = TRUE)
 #+end_src

***** Write

 Same analysis for write operations.
 #+begin_src R :results output graphics :file fig/griffon_write_dhist.png :exports both :width 600 :height 400 :session *R*
 griffon_write = df %>% filter(grepl("^Griffon", Cluster)) %>% filter(Operation == "Write") %>% select(Bwi)
 dhist(1/griffon_write$Bwi)
 #+end_src

 #+begin_src R :results output :session *R* :exports both
 griffon_write_dhist = dhist(1/griffon_write$Bwi, plot=FALSE)
 IO_INFO[["griffon"]][["noise"]][["write"]] = c(breaks=list(griffon_write_dhist$xbr), heights=list(unclass(griffon_write_dhist$heights)))
 IO_INFO[["griffon"]][["write_bw"]] = mean(1/griffon_write$Bwi)
 toJSON(IO_INFO, pretty = TRUE)
 #+end_src

*** Edel (SSD)
 This section presents the exactly same analysis for the Edel SSDs.

**** Modeling resource sharing w/ concurrent access

***** Read
 Getting read data for Edel from 1 to 15 concurrent operations.

 #+begin_src R :results output :session *R* :exports both
 deg_edel = dfc %>% filter(grepl("^Edel", Cluster)) %>% filter(Operation == "Read")
 model = loess(BW~Jobs, data = deg_edel)
 IO_INFO[["edel"]][["degradation"]][["read"]] = predict(model,data.frame(Jobs=seq(1,15)))
 toJSON(IO_INFO, pretty = TRUE)
 #+end_src

***** Write

 Same for write operations.

 #+begin_src R :results output :session *R* :exports both
 deg_edel = dfc %>% filter(grepl("^Edel", Cluster)) %>% filter(Operation == "Write") %>% filter(Jobs > 2)
 mean_job_1 = dfc %>% filter(grepl("^Edel", Cluster)) %>% filter(Operation == "Write") %>% filter(Jobs == 1) %>% summarize(mean = mean(BW))
 model = lm(BW~Jobs, data = deg_edel)
 IO_INFO[["edel"]][["degradation"]][["write"]] = c(mean_job_1$mean, predict(model,data.frame(Jobs=seq(2,15))))
 toJSON(IO_INFO, pretty = TRUE)
 #+end_src


**** Modeling read/write bandwidth variability

***** Read

 #+begin_src R :results output graphics :file fig/edel_read_dhist.png :exports both :width 600 :height 400 :session *R*
 edel_read = df %>% filter(grepl("^Edel", Cluster)) %>% filter(Operation == "Read") %>% select(Bwi)
 dhist(1/edel_read$Bwi)
 #+end_src

 Saving it to be exported in json format.

 #+begin_src R :results output :session *R* :exports both
 edel_read_dhist = dhist(1/edel_read$Bwi, plot=FALSE)
 IO_INFO[["edel"]][["noise"]][["read"]] = c(breaks=list(edel_read_dhist$xbr), heights=list(unclass(edel_read_dhist$heights)))
 IO_INFO[["edel"]][["read_bw"]] = mean(1/edel_read$Bwi)
 toJSON(IO_INFO, pretty = TRUE)
 #+end_src

***** Write
 #+begin_src R :results output graphics :file fig/edel_write_dhist.png :exports both :width 600 :height 400 :session *R*

 edel_write = df %>% filter(grepl("^Edel", Cluster)) %>% filter(Operation == "Write") %>% select(Bwi)
 dhist(1/edel_write$Bwi)
 #+end_src

 Saving it to be exported later.
 #+begin_src R :results output :session *R* :exports both
 edel_write_dhist = dhist(1/edel_write$Bwi, plot=FALSE)
 IO_INFO[["edel"]][["noise"]][["write"]] = c(breaks=list(edel_write_dhist$xbr), heights=list(unclass(edel_write_dhist$heights)))
 IO_INFO[["edel"]][["write_bw"]] = mean(1/edel_write$Bwi)
 toJSON(IO_INFO, pretty = TRUE)
 #+end_src

** Exporting to JSON
 Finally, let's save it to a file to be opened by our simulator.

 #+begin_src R :results output :session *R* :exports both
 json = toJSON(IO_INFO, pretty = TRUE)
 cat(json, file="IO_noise.json")
 #+end_src


** Injecting this data in SimGrid

 To mimic this behavior in SimGrid, we use two features in the platform
 description: non-linear sharing policy and bandwidth factors. For more
 details, please see the source code in =tuto_disk.cpp=.

*** Modeling resource sharing w/ concurrent access

 The =set_sharing_policy= method allows the user to set a callback to
 dynamically change the disk capacity. The callback is called each time
 SimGrid will share the disk between a set of I/O operations.

 The callback has access to the number of activities sharing the
 resource and its current capacity. It must return the new resource's
 capacity.

 #+begin_src C++ :results output :eval no :exports code
 static double disk_dynamic_sharing(double capacity, int n)
 {
    return capacity; //useless callback
 }

 auto* disk = host->add_disk("dump", 1e6, 1e6);
 disk->set_sharing_policy(sg4::Disk::Operation::READ, sg4::Disk::SharingPolicy::NONLINEAR, &disk_dynamic_sharing);
 #+end_src


*** Modeling read/write bandwidth variability

 The noise in I/O operations can be obtained by applying a factor to
 the I/O bandwidth of the disk. This factor is applied when we update
 the remaining amount of bytes to be transferred, increasing or
 decreasing the effective disk bandwidth.

 The =set_factor= method allows the user to set a callback to
 dynamically change the factor to be applied for each I/O operation.
 The callback has access to size of the operation and its type (read or
 write). It must return a multiply factor (e.g. 1.0 for doing nothing).

 #+begin_src C++ :results output :eval no :exports code
 static double disk_variability(sg_size_t size, sg4::Io::OpType op)
 {
    return 1.0; //useless callback
 }

 auto* disk = host->add_disk("dump", 1e6, 1e6);
 disk->set_factor_cb(&disk_variability);
 #+end_src


*** Running our simulation
 The binary was compiled in the provided docker container.

 #+begin_src sh :results output :exports both
 ./tuto_disk > ./simgrid_disk.csv
 #+end_src


** Analyzing the SimGrid results

The figure below presents the results obtained by SimGrid.

The experiment performs I/O operations, varying the number of
concurrent operations from 1 to 15. We run only 20 simulations for
each case.

We can see that the graphics are quite similar to the ones obtained in
the real platform.

 #+begin_src R :results output graphics :file fig/simgrid_results.png :exports both :width 600 :height 400 :session *R*
 sg_df = read.csv("./simgrid_disk.csv")
 sg_df = sg_df %>% group_by(disk, op, flows) %>% mutate(bw=((size*flows)/elapsed)/10^6, method=if_else(disk=="edel" & op=="read", "loess", "lm"))
 sg_dfd = sg_df %>% filter(flows==1 & op=="write") %>% group_by(disk, op, flows) %>% summarize(mean = mean(bw), sd = sd(bw), se=sd/sqrt(n()))

 sg_df[sg_df$op=="write" & sg_df$flows ==1,]$method=""

 ggplot(data=sg_df, aes(x=flows, y=bw, color=op)) + theme_bw() +
     geom_point(alpha=.3) +
     geom_smooth(data=sg_df[sg_df$method=="loess",], color="black", method=loess,se=TRUE,fullrange=T) +
     geom_smooth(data=sg_df[sg_df$method=="lm",], color="black", method=lm,se=TRUE) +
     geom_errorbar(data=sg_dfd, aes(x=flows, y=mean, ymin=mean-2*se, ymax=mean+2*se),color="black",width=.6) +
     facet_wrap(disk~op,ncol=2,scale="free_y")+ # ) + #
     xlab("Number of concurrent operations") + ylab("Aggregated Bandwidth (MiB/s)")  + guides(color=FALSE)  + xlim(0,NA) + ylim(0,NA)

 #+end_src

Note: The variability in griffon read operation seems to decrease when
we have more concurrent operations. This is a particularity of the
griffon read speed profile and the elapsed time calculation.

Given that:
- Each point represents the time to perform the N I/O operations.
- Griffon read speed decreases with the number of concurrent
  operations.

With 15 read operations:
- At the beginning, every read gets the same bandwidth, about
  42MiB/s.
- We sample the noise in I/O operations, some will be faster than
  others (e.g. factor > 1).

When the first read operation finish:
- We will recalculate the bandwidth sharing, now considering that we
  have 14 active read operations. This will increase the bandwidth for
  each operation (about 44MiB/s).
- The remaining "slower" activities will be speed up.

This behavior keeps happening until the end of the 15 operations,
at each step, we speed up a little the slowest operations and
consequently, decreasing the variability we see.