1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
/* Copyright (c) 2010-2025. The SimGrid Team. All rights reserved. */
/* This program is free software; you can redistribute it and/or modify it
* under the terms of the license (GNU LGPL) which comes with this package. */
/* This example shows how to build a torus cluster with multi-core hosts.
*
* However, each leaf in the torus is a StarZone, composed of several CPUs
*
* Each actor runs in a specific CPU. One sender broadcasts a message to all receivers.
*/
#include "simgrid/s4u.hpp"
#include "simgrid/s4u/NetZone.hpp"
namespace sg4 = simgrid::s4u;
XBT_LOG_NEW_DEFAULT_CATEGORY(s4u_torus_multicpu, "Messages specific for this s4u example");
class Sender {
long msg_size = 1e6; /* message size in bytes */
std::vector<sg4::Host*> hosts_;
public:
explicit Sender(const std::vector<sg4::Host*>& hosts) : hosts_{hosts} {}
void operator()() const
{
/* Vector in which we store all ongoing communications */
sg4::ActivitySet pending_comms;
/* Make a vector of the mailboxes to use */
std::vector<sg4::Mailbox*> mboxes;
/* Start dispatching 1 message to all receivers */
std::string msg_content = "Hello, I'm alive and running on " + sg4::this_actor::get_host()->get_name();
for (const auto* host : hosts_) {
/* Copy the data we send: the 'msg_content' variable is not a stable storage location.
* It will be destroyed when this actor leaves the loop, ie before the receiver gets it */
auto* payload = new std::string(msg_content);
/* Create a communication representing the ongoing communication, and store it in pending_comms */
auto* mbox = sg4::Mailbox::by_name(host->get_name());
mboxes.push_back(mbox);
sg4::CommPtr comm = mbox->put_async(payload, msg_size);
pending_comms.push(comm);
}
XBT_INFO("Done dispatching all messages");
/* Now that all message exchanges were initiated, wait for their completion in one single call */
pending_comms.wait_all();
XBT_INFO("Goodbye now!");
}
};
/* Receiver actor: wait for 1 message on the mailbox identified by the hostname */
class Receiver {
public:
void operator()() const
{
auto* mbox = sg4::Mailbox::by_name(sg4::this_actor::get_host()->get_name());
auto received = mbox->get_unique<std::string>();
XBT_INFO("I got a '%s'.", received->c_str());
}
};
/*************************************************************************************************/
/**
* @brief Callback to set a cluster leaf/element
*
* In our example, each leaf if a StarZone, composed of 8 CPUs.
* Each CPU is modeled as a host, connected to the outer world through a high-speed PCI link.
* Obs.: CPU0 is the gateway for this zone
*
* (outer world)
* CPU0 (gateway)
* up ->| |
* | |<-down
* +star+
* / / \ \
* / / \ \<-- 100Gbs, 10us link (1 link UP and 1 link DOWN for full-duplex)
* / / \ \
* / / \ \
* CPU1 ... CPU8
*
* @param zone Cluster netzone being created (usefull to create the hosts/links inside it)
* @param coord Coordinates in the cluster
* @param id Internal identifier in the torus (for information)
* @return netpoint, gateway: the netpoint to the StarZone and CPU0 as gateway
*/
static sg4::NetZone* create_hostzone(sg4::NetZone* zone, const std::vector<unsigned long>& /*coord*/, unsigned long id)
{
constexpr int num_cpus = 8; //!< Number of CPUs in the zone
constexpr double speed = 1e9; //!< Speed of each CPU
constexpr double link_bw = 100e9; //!< Link bw connecting the CPU
constexpr double link_lat = 1e-9; //!< Link latency
std::string hostname = "host" + std::to_string(id);
/* create the StarZone */
auto* host_zone = zone->add_netzone_star(hostname);
/* create CPUs */
for (int i = 0; i < num_cpus; i++) {
std::string cpu_name = hostname + "-cpu" + std::to_string(i);
const sg4::Host* host = host_zone->add_host(cpu_name, speed);
/* the first CPU is the gateway */
if (i == 0)
host_zone->set_gateway(host->get_netpoint());
/* create split-duplex link */
auto* link = host_zone->add_split_duplex_link("link-" + cpu_name, link_bw)->set_latency(link_lat);
/* connecting CPU to outer world */
host_zone->add_route(host, nullptr, {{link, sg4::LinkInRoute::Direction::UP}}, true);
}
/* seal newly created netzone */
host_zone->seal();
return host_zone;
}
/*************************************************************************************************/
/**
* @brief Callback to create limiter link (1Gbs) for each netpoint
*
* The coord parameter depends on the cluster being created:
* - Torus: Direct translation of the Torus' dimensions, e.g. (0, 0, 0) for a 3-D Torus
* - Fat-Tree: A pair (level in the tree, id), e.g. (0, 0) for first leaf in the tree and (1,0) for the first switch at
* level 1.
* - Dragonfly: a tuple (group, chassis, blades/routers, nodes), e.g. (0, 0, 0, 0) for first node in the cluster. To
* identify the router inside a (group, chassis, blade), we use MAX_UINT in the last parameter (e.g. 0, 0, 0,
* 4294967295).
*
* @param zone Torus netzone being created (usefull to create the hosts/links inside it)
* @param coord Coordinates in the cluster
* @param id Internal identifier in the torus (for information)
* @return Limiter link
*/
static sg4::Link* create_limiter(sg4::NetZone* zone, const std::vector<unsigned long>& /*coord*/, unsigned long id)
{
return zone->add_link("limiter-" + std::to_string(id), 1e9)->seal();
}
/**
* @brief Creates a TORUS cluster
*
* Creates a TORUS cluster with dimensions 2x2x2
*
* The cluster has 8 elements/leaves in total. Each element is a StarZone containing 8 Hosts.
* Each pair in the torus is connected through 2 links:
* 1) limiter: a 1Gbs limiter link (set by user through the set_limiter callback)
* 2) link: 10Gbs link connecting the components (created automatically)
*
* (Y-axis=2)
* A
* |
* | D (Z-axis=2)
* + / 10 Gbs
* | +
* |/ limiter=1Gps
* B-----+----C (X-axis=2)
*
* For example, a communication from A to C goes through:
* <tt> A->limiter(A)->link(A-B)->limiter(B)->link(B-C)->limiter(C)->C </tt>
*
* More precisely, considering that A and C are StarZones, a
* communication from A-CPU-3 to C-CPU-7 goes through:
* 1) StarZone A: A-CPU-3 -> link-up-A-CPU-3 -> A-CPU-0
* 2) A-CPU-0->limiter(A)->link(A-B)->limiter(B)->link(B-C)->limiter(C)->C-CPU-0
* 3) StarZone C: C-CPU-0-> link-down-C-CPU-7 -> C-CPU-7
*
* Note that we don't have limiter links inside the StarZones(A, B, C),
* but we have limiters in the Torus that are added to the links in the path (as we can see in "2)")
*
* More details in: <a href="https://simgrid.org/doc/latest/Platform_examples.html?highlight=torus#torus-cluster">Torus
* Cluster</a>
*/
static void create_torus_cluster(simgrid::s4u::NetZone* parent)
{
/* create the torus cluster, 10Gbs link between elements in the cluster */
parent
->add_netzone_torus("cluster", {2, 2, 2}, "10Gbps", "10us", sg4::Link::SharingPolicy::SPLITDUPLEX)
->set_netzone_cb(create_hostzone)
->set_limiter_cb(create_limiter)
->seal();
}
/*************************************************************************************************/
/**
* @brief Creates a Fat-Tree cluster
*
* Creates a Fat-Tree cluster with 2 levels and 6 nodes
* The following parameters are used to create this cluster:
* - Levels: 2 - two-level of switches in the cluster
* - Down links: 2, 3 - L2 routers is connected to 2 elements, L1 routers to 3 elements
* - Up links: 1, 2 - Each node (A-F) is connected to 1 L1 router, L1 routers are connected to 2 L2
* - Link count: 1, 1 - Use 1 link in each level
*
* The first parameter describes how many levels we have.
* The following ones describe the connection between the elements and must have exactly n_levels components.
*
*
* S3 S4 <-- Level 2 routers
* link:limiter - / \ / \
* + ++ +
* link: 10GBps --> | / \ |
* (full-duplex) | / \ |
* + + + +
* | / \ |
* S1 S2 <-- Level 1 routers
* link:limiter -> | |
* + +
* link:10GBps --> /|\ /|\
* / | \ / | \
* + + + + + +
* link:limiter -> / | \ / | \
* A B C D E F <-- level 0 Nodes
*
* Each element (A to F) is a StarZone containing 8 Hosts.
* The connection uses 2 links:
* 1) limiter: a 1Gbs limiter link (set by user through the set_limiter callback)
* 2) link: 10Gbs link connecting the components (created automatically)
*
* For example, a communication from A to C goes through:
* <tt> A->limiter(A)->link(A-S1)->limiter(S1)->link(S1-C)->->limiter(C)->C</tt>
*
* More precisely, considering that A and C are StarZones, a
* communication from A-CPU-3 to C-CPU-7 goes through:
* 1) StarZone A: A-CPU-3 -> link-up-A-CPU-3 -> A-CPU-0
* 2) A-CPU-0->limiter(A)->link(A-S1)->limiter(S1)->link(S1-C)->limiter(C)->C-CPU-0
* 3) StarZone C: C-CPU-0-> link-down-C-CPU-7 -> C-CPU-7
*
* More details in: <a href="https://simgrid.org/doc/latest/Platform_examples.html#fat-tree-cluster">Fat-Tree
* Cluster</a>
*/
static void create_fatTree_cluster(simgrid::s4u::NetZone* parent)
{
/* create the fat tree cluster, 10Gbs link between elements in the cluster */
parent
->add_netzone_fatTree("cluster", 2, {2, 3}, {1, 2}, {1, 1}, "10Gbps", "10us",
sg4::Link::SharingPolicy::SPLITDUPLEX)
->set_netzone_cb(create_hostzone)
->set_limiter_cb(create_limiter)
->seal();
}
/*************************************************************************************************/
/**
* @brief Creates a Dragonfly cluster
*
* Creates a Dragonfly cluster with 2 groups and 16 nodes
* The following parameters are used to create this cluster:
* - Groups: 2 groups, connected with 2 links (blue links)
* - Chassis: 2 chassis, connected with a single link (black links)
* - Routers: 2 routers, connected with 2 links (green links)
* - Nodes: 2 leaves per router, single link
*
* The diagram below illustrates a group in the dragonfly cluster
*
* +------------------------------------------------+
* | black link(1) |
* | +------------------------+ |
* | +---|--------------+ +---|--------------+ |
* | | | green | | | green | |
* | | | links (2) | | | links (2) | | blue links(2)
* | | R1 ====== R2 | | R3 ----- R4 ======================> "Group 2"
* | | / \ / \ | | / \ / \ | |
* | | A B C D | | E F G H | |
* | +------------------+ +------------------+ |
* | Chassis 1 Chassis 2 |
* +------------------------------------------------+
* Group 1
*
* Each element (A, B, C, etc) is a StarZone containing 8 Hosts.
* The connection between elements (e.g. A->R1) uses 2 links:
* 1) limiter: a 1Gbs limiter link (set by user through the set_limiter callback)
* 2) link: 10Gbs link connecting the components (created automatically)
*
* For example, a communication from A to C goes through:
* <tt> A->limiter(A)->link(A-R1)->limiter(R1)->link(R1-R2)->limiter(R2)->link(R2-C)limiter(C)->C</tt>
*
* More details in: <a href="https://simgrid.org/doc/latest/Platform_examples.html#dragonfly-cluster">Dragonfly
* Cluster</a>
*/
static void create_dragonfly_cluster(simgrid::s4u::NetZone* parent)
{
/* create the dragonfly cluster, 10Gbs link between elements in the cluster */
parent->add_netzone_dragonfly("cluster", {2, 2}, {2, 1}, {2, 2}, 2, "10Gbps", "10us",
sg4::Link::SharingPolicy::SPLITDUPLEX)
->set_netzone_cb(create_hostzone)
->set_limiter_cb(create_limiter)
->seal();
}
/*************************************************************************************************/
int main(int argc, char* argv[])
{
sg4::Engine e(&argc, argv);
/* create platform */
if (std::string platform(argv[1]); platform == "torus")
create_torus_cluster(e.get_netzone_root());
else if (platform == "fatTree")
create_fatTree_cluster(e.get_netzone_root());
else if (platform == "dragonfly")
create_dragonfly_cluster(e.get_netzone_root());
std::vector<sg4::Host*> host_list = e.get_all_hosts();
/* create the sender actor running on first host */
host_list[0]->add_actor("sender", Sender(host_list));
/* create receiver in every host */
for (auto* host : host_list) {
host->add_actor("receiver-" + host->get_name(), Receiver());
}
/* runs the simulation */
e.run();
return 0;
}
|