1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
/* Copyright (c) 2009-2025. The SimGrid Team. All rights reserved. */
/* This program is free software; you can redistribute it and/or modify it
* under the terms of the license (GNU LGPL) which comes with this package. */
/* simple test to schedule a DAX file with the Min-Min algorithm. */
#include <algorithm>
#include <simgrid/host.h>
#include <simgrid/s4u.hpp>
#include <string.h>
XBT_LOG_NEW_DEFAULT_CATEGORY(dag_scheduling, "Logging specific to this example");
namespace sg4 = simgrid::s4u;
static std::vector<sg4::Exec*> get_ready_tasks(const std::vector<sg4::ActivityPtr>& dax)
{
std::vector<sg4::Exec*> ready_tasks;
std::map<sg4::Exec*, unsigned int> candidate_execs;
for (const auto& a : dax) {
// Only look at activity that have their dependencies solved but are not assigned
if (a->dependencies_solved() && not a->is_assigned()) {
// if it is an exec, it's ready
if (auto* exec = dynamic_cast<sg4::Exec*>(a.get()))
ready_tasks.push_back(exec);
// if it a comm, we consider its successor as a candidate. If a candidate solves all its dependencies,
// i.e., get all its input data, it's ready
if (const auto* comm = dynamic_cast<sg4::Comm*>(a.get())) {
auto* next_exec = static_cast<sg4::Exec*>(comm->get_successors().front().get());
candidate_execs[next_exec]++;
if (next_exec->get_dependencies().size() == candidate_execs[next_exec])
ready_tasks.push_back(next_exec);
}
}
}
XBT_DEBUG("There are %zu ready tasks", ready_tasks.size());
return ready_tasks;
}
static sg4::Host* get_best_host(const sg4::ExecPtr exec, double* min_finish_time)
{
sg4::Host* best_host = nullptr;
*min_finish_time = std::numeric_limits<double>::max();
for (const auto& host : sg4::Engine::get_instance()->get_all_hosts()) {
double data_available = 0.;
double last_data_available = -1.0;
/* compute last_data_available */
for (const auto& parent : exec->get_dependencies()) {
/* normal case */
if (const auto* comm = dynamic_cast<sg4::Comm*>(parent.get())) {
const auto* source = comm->get_source();
XBT_DEBUG("transfer from %s to %s", source->get_cname(), host->get_cname());
/* Estimate the redistribution time from this parent */
double redist_time;
if (comm->get_remaining() <= 1e-6) {
redist_time = 0;
} else {
double bandwidth = std::numeric_limits<double>::max();
auto [links, latency] = source->route_to(host);
for (auto const& link : links)
bandwidth = std::min(bandwidth, link->get_bandwidth());
redist_time = latency + comm->get_remaining() / bandwidth;
}
// We use the user data field to store the finish time of the predecessor of the comm, i.e., its potential
// start time
data_available = *comm->get_data<double>() + redist_time;
}
/* no transfer, control dependency */
if (const auto* parent_exec = dynamic_cast<sg4::Exec*>(parent.get()))
data_available = parent_exec->get_finish_time();
if (last_data_available < data_available)
last_data_available = data_available;
}
double finish_time = std::max(*host->get_data<double>(), last_data_available) +
exec->get_remaining() / host->get_speed();
XBT_DEBUG("%s finishes on %s at %f", exec->get_cname(), host->get_cname(), finish_time);
if (finish_time < *min_finish_time) {
*min_finish_time = finish_time;
best_host = host;
}
}
return best_host;
}
static void schedule_on(sg4::ExecPtr exec, sg4::Host* host, double busy_until = 0.0)
{
exec->set_host(host);
// We use the user data field to store up to when the host is busy
delete host->get_data<double>(); // In case we're erasing a previous value
host->set_data(new double(busy_until));
// we can also set the destination of all the input comms of this exec
for (const auto& pred : exec->get_dependencies()) {
auto* comm = dynamic_cast<sg4::Comm*>(pred.get());
if (comm != nullptr) {
comm->set_destination(host);
delete comm->get_data<double>();
}
}
// we can also set the source of all the output comms of this exec
for (const auto& succ : exec->get_successors()) {
auto* comm = dynamic_cast<sg4::Comm*>(succ.get());
if (comm != nullptr)
comm->set_source(host);
}
}
int main(int argc, char** argv)
{
sg4::Engine e(&argc, argv);
std::set<sg4::Activity*> vetoed;
e.track_vetoed_activities(&vetoed);
sg4::Exec::on_completion_cb([](sg4::Exec const& exec) {
// when an Exec completes, we need to set the potential start time of all its ouput comms
for (const auto& succ : exec.get_successors()) {
auto* comm = dynamic_cast<sg4::Comm*>(succ.get());
if (comm != nullptr) {
auto* finish_time = new double(exec.get_finish_time());
// We use the user data field to store the finish time of the predecessor of the comm, i.e., its potential start
// time
comm->set_data(finish_time);
}
}
});
e.load_platform(argv[1]);
/* Mark all hosts as sequential, as it ought to be in such a scheduling example.
*
* It means that the hosts can only compute one thing at a given time. If an execution already takes place on a given
* host, any subsequently started execution will be queued until after the first execution terminates */
for (auto const& host : e.get_all_hosts()) {
host->set_concurrency_limit(1);
host->set_data(new double(0.0));
}
/* load the DAX file */
auto dax = sg4::create_DAG_from_DAX(argv[2]);
/* Schedule the root first */
double root_finish_time;
auto* root = static_cast<sg4::Exec*>(dax.front().get());
auto* host = get_best_host(root, &root_finish_time);
schedule_on(root, host);
e.run();
while (not vetoed.empty()) {
XBT_DEBUG("Start new scheduling round");
/* Get the set of ready tasks */
auto ready_tasks = get_ready_tasks(dax);
vetoed.clear();
if (ready_tasks.empty()) {
/* there is no ready exec, let advance the simulation */
e.run();
continue;
}
/* For each ready exec:
* get the host that minimizes the completion time.
* select the exec that has the minimum completion time on its best host.
*/
double min_finish_time = std::numeric_limits<double>::max();
sg4::Exec* selected_task = nullptr;
sg4::Host* selected_host = nullptr;
for (auto* exec : ready_tasks) {
XBT_DEBUG("%s is ready", exec->get_cname());
double finish_time;
host = get_best_host(exec, &finish_time);
if (finish_time < min_finish_time) {
min_finish_time = finish_time;
selected_task = exec;
selected_host = host;
}
}
XBT_INFO("Schedule %s on %s", selected_task->get_cname(), selected_host->get_cname());
schedule_on(selected_task, selected_host, min_finish_time);
ready_tasks.clear();
e.run();
}
/* Cleanup memory */
for (auto const* h : e.get_all_hosts())
delete h->get_data<double>();
XBT_INFO("Simulation Time: %f", e.get_clock());
return 0;
}
|