1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
/* Copyright (c) 2009-2025. The SimGrid Team. All rights reserved. */
/* This program is free software; you can redistribute it and/or modify it
* under the terms of the license (GNU LGPL) which comes with this package. */
/* simple test to schedule a DAX file with the Min-Min algorithm. */
import java.util.HashMap;
import java.util.Map;
import java.util.Vector;
import org.simgrid.s4u.*;
/* Java cannot return pairs of value, so we have to build such a pair explicitely */
class SchedulingDecision {
Host host;
double min_finish_time;
}
public class dag_scheduling {
static Vector<Exec> get_ready_tasks(Activity[] dax)
{
Vector<Exec> ready_tasks = new Vector<>();
Map<Exec, Integer> candidate_execs = new HashMap<>();
for (Activity a : dax) {
// Only look at activity that have their dependencies solved but are not assigned
if (a.dependencies_solved() && !a.is_assigned()) {
// if it is an exec, it's ready
if (a instanceof Exec)
ready_tasks.add((Exec)a);
// if it a comm, we consider its successor as a candidate. If a candidate solves all its dependencies,
// i.e., get all its input data, it's ready
if (a instanceof Comm) {
Exec next_exec = (Exec)((Comm)a).get_successors()[0];
candidate_execs.put(next_exec, candidate_execs.getOrDefault(next_exec, 0) + 1);
if (next_exec.get_dependencies().length == candidate_execs.get(next_exec)) {
ready_tasks.add(next_exec);
Engine.critical("next_exec is schedulable");
}
}
}
}
return ready_tasks;
}
static SchedulingDecision get_best_host(Exec exec)
{
SchedulingDecision res = new SchedulingDecision();
res.host = null;
res.min_finish_time = Double.MAX_VALUE;
for (Host host : Engine.get_instance().get_all_hosts()) {
double data_available = 0.;
double last_data_available = -1.0;
/* compute last_data_available */
for (Activity parent : exec.get_dependencies()) {
/* normal case */
if (parent instanceof Comm) {
Comm comm = (Comm)parent;
Host source = comm.get_source();
Engine.debug("transfer from %s to %s", source.get_name(), host.get_name());
/* Estimate the redistribution time from this parent */
double redist_time;
if (comm.get_remaining() <= 1e-6) {
redist_time = 0;
} else {
double bandwidth = Double.MAX_VALUE;
Link[] links = source.route_links_to(host);
double latency = source.route_latency_to(host);
for (Link link : links)
bandwidth = Math.min(bandwidth, link.get_bandwidth());
redist_time = latency + comm.get_remaining() / bandwidth;
}
// We use the user data field to store the finish time of the predecessor of the comm, i.e., its potential
// start time
data_available = (Double)comm.get_data() + redist_time;
}
/* no transfer, control dependency */
if (parent instanceof Exec)
data_available = ((Exec)parent).get_finish_time();
if (last_data_available < data_available)
last_data_available = data_available;
}
double finish_time =
Math.max((Double)host.get_data(), last_data_available) + exec.get_remaining() / host.get_speed();
Engine.debug("%s finishes on %s at %f", exec.get_name(), host.get_name(), finish_time);
if (finish_time < res.min_finish_time) {
res.min_finish_time = finish_time;
res.host = host;
}
}
return res;
}
static void schedule_on(Exec exec, Host host, double busy_until)
{
exec.set_host(host);
// We use the user data field to store up to when the host is busy
host.set_data(Double.valueOf(busy_until));
// we can also set the destination of all the input comms of this exec
for (Activity succ : exec.get_successors()) {
if (succ instanceof Comm) {
Comm comm = (Comm)succ;
comm.set_destination(host);
comm.set_data(null);
}
}
// we can also set the source of all the output comms of this exec
for (Activity succ : exec.get_successors()) {
if (succ instanceof Comm) {
((Comm)succ).set_source(host);
}
}
}
public static void main(String[] args)
{
Engine e = new Engine(args);
e.track_vetoed_activities();
Exec.on_completion_cb(new CallbackExec() {
public void run(Exec exec)
{
Engine.info("Task %s completes", exec.get_name());
// when an Exec completes, we need to set the potential start time of all its ouput comms
for (Activity succ : exec.get_successors()) {
if (succ instanceof Comm) {
Double finish_time = Double.valueOf(exec.get_finish_time());
// We use the user data field to store the finish time of the predecessor of the comm, i.e., its potential
// start time
succ.set_data(finish_time);
}
}
}
});
e.load_platform(args[0]);
/* Mark all hosts as sequential, as it ought to be in such a scheduling example.
*
* It means that the hosts can only compute one thing at a given time. If an execution already takes place on a
* given host, any subsequently started execution will be queued until after the first execution terminates */
for (Host host : e.get_all_hosts()) {
host.set_concurrency_limit(1);
host.set_data(Double.valueOf(0.0));
}
/* load the DAX file */
Activity[] dax = e.create_DAG_from_DAX(args[1]);
/* Schedule the root first */
Exec root = (Exec)dax[0];
SchedulingDecision decision = get_best_host(root);
schedule_on(root, decision.host, 0);
e.run();
while (e.get_vetoed_activities().length > 0) {
Engine.debug("Start new scheduling round");
/* Get the set of ready tasks */
Vector<Exec> ready_tasks = get_ready_tasks(dax);
e.clear_vetoed_activities();
if (ready_tasks.size() == 0) {
Engine.debug("There is no ready exec, let's advance the simulation.");
e.run();
continue;
} else {
Engine.debug("There are %d ready exec, let's schedule them.", ready_tasks.size());
}
/* For each ready exec:
* get the host that minimizes the completion time.
* select the exec that has the minimum completion time on its best host.
*/
double min_finish_time = Double.MAX_VALUE;
Exec selected_task = null;
Host selected_host = null;
for (Exec exec : ready_tasks) {
decision = get_best_host(exec);
if (decision.min_finish_time < min_finish_time) {
min_finish_time = decision.min_finish_time;
selected_task = exec;
selected_host = decision.host;
}
}
Engine.info("Schedule %s on %s", selected_task.get_name(), selected_host.get_name());
schedule_on(selected_task, selected_host, min_finish_time);
ready_tasks.clear();
e.run();
}
/* Cleanup memory */
for (Host h : e.get_all_hosts())
h.set_data(null);
Engine.info("Simulation ends.");
// The following call is useless in your code, but our continuous integration uses it to track memleaks
e.force_garbage_collection();
}
}
|