1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "smpi/mpi.h"
#include "nas_common.h"
#include "simgrid/instr.h" //TRACE_
char class;
int nprocs;
#define TRUE 1
#define FALSE 0
int main(int argc, char **argv) {
double dum[3] = {1.,1.,1.};
double x1, x2, sx, sy, tm, an, gc;
double Mops;
double epsilon=1.0E-8, a = 1220703125., s=271828183.;
double t1, t2, t3, t4;
double sx_verify_value, sy_verify_value, sx_err, sy_err;
int m;
int mk=16;
int nk = (int)(pow(2,mk)),
nq=10,
np, node, no_nodes, i, ik, kk, l, k, nit, no_large_nodes, np_add, k_offset;
int verified;
char size[500]; // mind the size of the string to represent a big number
double *x = (double *) SMPI_SHARED_MALLOC (2*nk*sizeof(double));
double *q = (double *) SMPI_SHARED_MALLOC (nq*sizeof(double));
MPI_Init( &argc, &argv );
MPI_Comm_size( MPI_COMM_WORLD, &no_nodes);
MPI_Comm_rank( MPI_COMM_WORLD, &node);
TRACE_smpi_set_category ("start");
get_info(argc, argv, &nprocs, &class);
check_info(EP, nprocs, class);
if (class == 'S')
{ m = 24; }
else if (class == 'W')
{ m = 25; }
else if (class == 'A')
{ m = 28; }
else if (class == 'B')
{ m = 30; }
else if (class == 'C')
{ m = 32; }
else if (class == 'D')
{ m = 36; }
else if (class == 'E')
{ m = 40; }
else {
printf("EP: Internal error: invalid class type %c\n", class);
exit(1);
}
int mm = m -mk;
int nn = (int)(pow(2,mm));
int root = 0;
if (node == root ) {
/* Because the size of the problem is too large to store in a 32-bit integer for some classes, we put it into a
* string (for printing). Have to strip off the decimal point put in there by the floating point print statement
* (internal file) */
fprintf(stdout," NAS Parallel Benchmarks 3.2 -- EP Benchmark");
snprintf(size,500,"%lu",(unsigned long)pow(2,m+1));
fprintf(stdout," Number of random numbers generated: %s\n",size);
fprintf(stdout," Number of active processes: %d\n",no_nodes);
}
/* Compute the number of "batches" of random number pairs generated per processor. Adjust if the number of processors
* does not evenly divide the total number */
np = nn / no_nodes;
no_large_nodes = nn % no_nodes;
if (node < no_large_nodes)
np_add = 1;
else
np_add = 0;
np = np + np_add;
if (np == 0) {
fprintf(stdout,"Too many nodes: %d %d",no_nodes,nn);
MPI_Abort(MPI_COMM_WORLD,1);
exit(0);
}
/* Call the random number generator functions and initialize the x-array to reduce the effects of paging the timings.
Also, call all mathematical functions that are used. Make sure initializations cannot be eliminated as dead code. */
vranlc(0, dum[0], dum[1], &(dum[2]));
dum[0] = randlc(&(dum[1]),&(dum[2]));
for (i=0;i<2*nk;i++) {
x[i] = -1e99;
}
/* Synchronize before placing time stamp */
MPI_Barrier( MPI_COMM_WORLD );
TRACE_smpi_set_category ("ep");
timer_clear(1);
timer_clear(2);
timer_clear(3);
timer_start(1);
t1 = a;
t1 = vranlc(0, t1, a, x);
/* Compute AN = A ^ (2 * NK) (mod 2^46). */
t1 = a;
for (i=1; i <= mk+1; i++) {
t2 = randlc(&t1, &t1);
}
an = t1;
gc = 0;
sx = 0.;
sy = 0.;
for (i=0; i < nq ; i++) {
q[i] = 0.;
}
/* Each instance of this loop may be performed independently. We compute the k offsets separately to take into account
* the fact that some nodes have more numbers to generate than others */
if (np_add == 1)
k_offset = node * np -1;
else
k_offset = no_large_nodes*(np+1) + (node-no_large_nodes)*np -1;
int stop = FALSE;
SMPI_SAMPLE_GLOBAL(k = 1, k <= np, k++, 0.25 * np, 0.03){
stop = FALSE;
kk = k_offset + k ;
t1 = s;
t2 = an;
// Find starting seed t1 for this kk.
for (i=1;i<=100 && !stop;i++) {
ik = kk / 2;
if (2 * ik != kk) {
randlc(&t1, &t2);
}
if (ik==0)
stop = TRUE;
else {
randlc(&t2, &t2);
kk = ik;
}
}
// Compute uniform pseudorandom numbers.
timer_start(3);
t1 = vranlc(2 * nk, t1, a, x);
timer_stop(3);
/* Compute Gaussian deviates by acceptance-rejection method and tally counts in concentric square annuli.
* This loop is not vectorizable. */
timer_start(2);
for(i=1; i<=nk;i++) {
x1 = 2. * x[2*i-2] -1.0;
x2 = 2. * x[2*i-1] - 1.0;
t1 = x1*x1 + x2*x2;
if (t1 <= 1.) {
t2 = sqrt(-2. * log(t1) / t1);
t3 = (x1 * t2);
t4 = (x2 * t2);
l = (int)(fabs(t3) > fabs(t4) ? fabs(t3) : fabs(t4));
q[l] = q[l] + 1.;
sx = sx + t3;
sy = sy + t4;
}
}
timer_stop(2);
}
TRACE_smpi_set_category ("finalize");
MPI_Allreduce(&sx, x, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
sx = x[0];
MPI_Allreduce(&sy, x, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
sy = x[0];
MPI_Allreduce(q, x, nq, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
for(i = 0; i < nq; i++) {
q[i] = x[i];
}
for(i = 0; i < nq; i++) {
gc += q[i];
}
timer_stop(1);
tm = timer_read(1);
MPI_Allreduce(&tm, x, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
tm = x[0];
SMPI_SHARED_FREE(x);
if(node == root) {
nit = 0;
verified = TRUE;
if(m == 24) {
sx_verify_value = -3.247834652034740E3;
sy_verify_value = -6.958407078382297E3;
} else if(m == 25) {
sx_verify_value = -2.863319731645753E3;
sy_verify_value = -6.320053679109499E3;
} else if(m == 28) {
sx_verify_value = -4.295875165629892E3;
sy_verify_value = -1.580732573678431E4;
} else if(m == 30) {
sx_verify_value = 4.033815542441498E4;
sy_verify_value = -2.660669192809235E4;
} else if(m == 32) {
sx_verify_value = 4.764367927995374E4;
sy_verify_value = -8.084072988043731E4;
} else if(m == 36) {
sx_verify_value = 1.982481200946593E5;
sy_verify_value = -1.020596636361769E5;
} else {
verified = FALSE;
}
if(verified) {
sx_err = fabs((sx - sx_verify_value)/sx_verify_value);
sy_err = fabs((sy - sy_verify_value)/sy_verify_value);
verified = ((sx_err < epsilon) && (sy_err < epsilon));
}
Mops = (pow(2.0, m+1))/tm/1000;
fprintf(stdout,"EP Benchmark Results:\n");
fprintf(stdout,"CPU Time=%d\n",(int) tm);
fprintf(stdout,"N = 2^%d\n",m);
fprintf(stdout,"No. Gaussain Pairs =%d\n",(int) gc);
fprintf(stdout,"Sum = %f %ld\n",sx,(long) sy);
fprintf(stdout,"Count:");
for(i = 0; i < nq; i++) {
fprintf(stdout,"%d\t %ld\n",i,(long) q[i]);
}
c_print_results("EP", class, m+1, 0, 0, nit, nprocs, no_nodes, tm, Mops, "Random number generated",verified);
fprintf(stdout,"Total time: %f\n",(timer_read(1)/1000));
fprintf(stdout,"Gaussian pairs: %f\n",(timer_read(2)/1000));
fprintf(stdout,"Random numbers: %f\n",(timer_read(3)/1000));
}
SMPI_SHARED_FREE(q);
MPI_Finalize();
return 0;
}
|