File: functional.hpp

package info (click to toggle)
simgrid 4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 39,192 kB
  • sloc: cpp: 124,913; ansic: 66,744; python: 8,560; java: 6,773; fortran: 6,079; f90: 5,123; xml: 4,587; sh: 2,194; perl: 1,436; makefile: 111; lisp: 49; javascript: 7; sed: 6
file content (264 lines) | stat: -rw-r--r-- 7,730 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/* Copyright (c) 2015-2025. The SimGrid Team. All rights reserved.          */

/* This program is free software; you can redistribute it and/or modify it
 * under the terms of the license (GNU LGPL) which comes with this package. */

#ifndef XBT_FUNCTIONAL_HPP
#define XBT_FUNCTIONAL_HPP

#include <xbt/sysdep.h>

#include <cstddef>
#include <cstdlib>
#include <cstring>

#include <algorithm>
#include <array>
#include <exception>
#include <functional>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>

namespace simgrid::xbt {

template <class F> class MainFunction {
  F code_;
  std::shared_ptr<const std::vector<std::string>> args_;

public:
  MainFunction(F code, std::vector<std::string>&& args)
      : code_(std::move(code)), args_(std::make_shared<const std::vector<std::string>>(std::move(args)))
  {
  }
  void operator()() const
  {
    std::vector<std::string> args = *args_;
    std::vector<char*> argv(args.size() + 1); // argv[argc] is nullptr
    std::transform(begin(args), end(args), begin(argv), [](std::string& s) { return &s.front(); });
    code_(static_cast<int>(args.size()), argv.data());
  }
};

template <class F> inline std::function<void()> wrap_main(F code, std::vector<std::string>&& args)
{
  return MainFunction<F>(std::move(code), std::move(args));
}

template <class F> inline std::function<void()> wrap_main(F code, int argc, const char* const argv[])
{
  std::vector<std::string> args(argv, argv + argc);
  return MainFunction<F>(std::move(code), std::move(args));
}

namespace bits {
template <class F, class Tuple, std::size_t... I>
constexpr auto apply(F&& f, Tuple&& t, std::index_sequence<I...>)
    -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...))
{
  return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
}

/** Call a functional object with the values in the given tuple (from C++17)
 *
 *  @code{.cpp}
 *  int foo(int a, bool b);
 *
 *  auto args = std::make_tuple(1, false);
 *  int res = apply(foo, args);
 *  @endcode
 **/
template <class F, class Tuple>
constexpr auto apply(F&& f, Tuple&& t)
    -> decltype(simgrid::xbt::bits::apply(std::forward<F>(f), std::forward<Tuple>(t),
                                          std::make_index_sequence<std::tuple_size_v<typename std::decay_t<Tuple>>>()))
{
  return simgrid::xbt::bits::apply(std::forward<F>(f), std::forward<Tuple>(t),
                                   std::make_index_sequence<std::tuple_size_v<typename std::decay_t<Tuple>>>());
}

template<class T> class Task;

/** Type-erased run-once task
 *
 *  * Like std::function but callable only once.
 *    However, it works with move-only types.
 *
 *  * Like std::packaged_task<> but without the shared state.
 */
template<class R, class... Args>
class Task<R(Args...)> {
  // Placeholder for some class type:
  struct whatever {};

  // Union used for storage:
  struct TaskUnion {
    alignas(std::max({alignof(void*), alignof(std::pair<void (*)(), void*>)}))
        std::byte storage[std::max({sizeof(void*), sizeof(std::pair<void (*)(), void*>)})];
  };
  // Is F suitable for small buffer optimization?
  template<class F>
  static constexpr bool canSBO()
  {
    return sizeof(F) <= sizeof(TaskUnion) &&
      alignof(F) <= alignof(TaskUnion);
  }

  static_assert(canSBO<std::reference_wrapper<whatever>>(),
    "SBO not working for reference_wrapper");

  // Call (and possibly destroy) the function:
  using call_function = R (*)(TaskUnion&, Args...);
  // Destroy the function (of needed):
  using destroy_function = void (*)(TaskUnion&);
  // Move the function (otherwise memcpy):
  using move_function = void (*)(TaskUnion& dest, TaskUnion& src);

  // Vtable of functions for manipulating whatever is in the TaskUnion:
  struct TaskVtable {
    call_function call;
    destroy_function destroy;
    move_function move;
  };

  TaskUnion buffer_         = {};
  const TaskVtable* vtable_ = nullptr;

  void clear()
  {
    if (vtable_ && vtable_->destroy)
      vtable_->destroy(buffer_);
  }

public:
  Task() = default;
  explicit Task(std::nullptr_t) { /* Nothing to do */}
  ~Task()
  {
    this->clear();
  }

  Task(Task const&) = delete;

  Task(Task&& that) noexcept
  {
    if (that.vtable_ && that.vtable_->move)
      that.vtable_->move(buffer_, that.buffer_);
    else
      std::memcpy(&buffer_, &that.buffer_, sizeof(buffer_));
    vtable_      = std::move(that.vtable_);
    that.vtable_ = nullptr;
  }
  Task& operator=(Task const& that) = delete;
  Task& operator=(Task&& that) noexcept
  {
    this->clear();
    if (that.vtable_ && that.vtable_->move)
      that.vtable_->move(buffer_, that.buffer_);
    else
      std::memcpy(&buffer_, &that.buffer_, sizeof(buffer_));
    vtable_      = std::move(that.vtable_);
    that.vtable_ = nullptr;
    return *this;
  }

private:
  template <class F> typename std::enable_if_t<canSBO<F>()> init(F task_code)
  {
    const static TaskVtable vtable {
      // Call:
      [](TaskUnion& buffer, Args... args) {
        auto* src = reinterpret_cast<F*>(&buffer);
        F code = std::move(*src);
        src->~F();
        // NOTE: std::forward<Args>(args)... is correct.
        return code(std::forward<Args>(args)...);
      },
      // Destroy:
      std::is_trivially_destructible_v<F> ?
      static_cast<destroy_function>(nullptr) :
      [](TaskUnion& buffer) {
        auto* code = reinterpret_cast<F*>(&buffer);
        code->~F();
      },
      // Move:
      [](TaskUnion& dst, TaskUnion& src) {
        auto* src_code = reinterpret_cast<F*>(&src);
        auto* dst_code = reinterpret_cast<F*>(&dst);
        new(dst_code) F(std::move(*src_code));
        src_code->~F();
      }
    };
    new (&buffer_) F(std::move(task_code));
    vtable_ = &vtable;
  }

  template <class F> typename std::enable_if_t<not canSBO<F>()> init(F task_code)
  {
    const static TaskVtable vtable {
      // Call:
      [](TaskUnion& buffer, Args... args) {
        // Delete F when we go out of scope:
        std::unique_ptr<F> code(*reinterpret_cast<F**>(&buffer));
        // NOTE: std::forward<Args>(args)... is correct.
        return (*code)(std::forward<Args>(args)...);
      },
      // Destroy:
      [](TaskUnion& buffer) {
        F* code = *reinterpret_cast<F**>(&buffer);
        delete code;
      },
      // Move:
      nullptr
    };
    *reinterpret_cast<F**>(&buffer_) = new F(std::move(task_code));
    vtable_ = &vtable;
  }

public:
  template <class F> explicit Task(F code) { this->init(std::move(code)); }

  operator bool() const { return vtable_ != nullptr; }
  bool operator!() const { return vtable_ == nullptr; }

  R operator()(Args... args)
  {
    if (vtable_ == nullptr)
      throw std::bad_function_call();
    const TaskVtable* vtable = vtable_;
    vtable_ = nullptr;
    // NOTE: std::forward<Args>(args)... is correct.
    // see C++ [func.wrap.func.inv] for an example
    return vtable->call(buffer_, std::forward<Args>(args)...);
  }
};

template<class F, class... Args>
class TaskImpl {
  F code_;
  std::tuple<Args...> args_;
  using result_type = decltype(simgrid::xbt::apply(std::move(code_), std::move(args_)));

public:
  TaskImpl(F code, std::tuple<Args...> args) :
    code_(std::move(code)),
    args_(std::move(args))
  {}
  result_type operator()()
  {
    return simgrid::xbt::apply(std::move(code_), std::move(args_));
  }
};

template <class F, class... Args> auto make_task(F code, Args... args) -> Task<decltype(code(std::move(args)...))()>
{
  TaskImpl<F, Args...> task(std::move(code), std::make_tuple(std::move(args)...));
  return Task<decltype(code(std::move(args)...))()>(std::move(task));
}

} // namespace simgrid::xbt
#endif