File: i1620_cpu.c

package info (click to toggle)
simh 3.8.1-6.1
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye
  • size: 16,164 kB
  • sloc: ansic: 209,819; makefile: 324
file content (2184 lines) | stat: -rw-r--r-- 85,334 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
/* i1620_cpu.c: IBM 1620 CPU simulator

   Copyright (c) 2002-2008, Robert M. Supnik

   Permission is hereby granted, free of charge, to any person obtaining a
   copy of this software and associated documentation files (the "Software"),
   to deal in the Software without restriction, including without limitation
   the rights to use, copy, modify, merge, publish, distribute, sublicense,
   and/or sell copies of the Software, and to permit persons to whom the
   Software is furnished to do so, subject to the following conditions:

   The above copyright notice and this permission notice shall be included in
   all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
   ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
   IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

   Except as contained in this notice, the name of Robert M Supnik shall not be
   used in advertising or otherwise to promote the sale, use or other dealings
   in this Software without prior written authorization from Robert M Supnik.

   This CPU module incorporates code and comments from the 1620 simulator by
   Geoff Kuenning, with his permission.

   28-May-06    RMS     Fixed bug in cpu history (found by Peter Schorn)
   22-Sep-05    RMS     Fixed declarations (from Sterling Garwood)
   16-Aug-05    RMS     Fixed C++ declaration and cast problems
   07-Nov-04    RMS     Added instruction history
   26-Mar-04    RMS     Fixed warnings with -std=c99
   02-Nov-03    RMS     Fixed bug in branch digit (found by Dave Babcock)
   21-Aug-03    RMS     Fixed bug in immediate index add (found by Michael Short)
   25-Apr-03    RMS     Changed t_addr to uint32 throughout
   18-Oct-02    RMS     Fixed bugs in invalid result testing (found by Hans Pufal)

   The simulated register state for the IBM 1620 is:

   1620         sim     comment

   IR1          [PC]    program counter
   IR2                  instruction register 2 (subroutine return address)
   OR1          [QAR]   Q address
   OR2          [PAR]   P address
   PR1                  manual save address
   ind[0:99]            indicators

   Additional internal registers OR3, PR2, and PR3 are not simulated.

   The IBM 1620 is a fixed instruction length, variable data length, decimal
   data system.  Memory consists of 20000 - 60000 BCD digits, each containing
   four bits of data and a flag.  There are no general registers; all
   instructions are memory to memory.

   The 1620 uses a fixed, 12 digit instruction format:

        oo ppppp qqqqq

   where

        oo      =       opcode
        ppppp   =       P (usually destination) address
        qqqqq   =       Q (usually source) address

   Immediate instructions use the qqqqq field as the second operand.

   The 1620 Model 1 uses table lookups for add and multiply; for that reason,
   it was nicknamed CADET (Can't Add, Doesn't Even Try).  The Model 2 does
   adds in hardware and uses the add table memory for index registers.

   This routine is the instruction decode routine for the IBM 1620.
   It is called from the simulator control program to execute
   instructions in simulated memory, starting at the simulated PC.
   It runs until 'reason' is set non-zero.

   General notes:

   1. Reasons to stop.  The simulator can be stopped by:

        HALT instruction
        breakpoint encountered
        illegal addresses or instruction formats
        I/O error in I/O simulator

   2. Interrupts.  The 1620 has no interrupt structure.

   3. Non-existent memory.  On the 1620, all memory references
      are modulo the memory size.

   4. Adding I/O devices.  These modules must be modified:

        i1620_cpu.c     add iodisp table entry
        i1620_sys.c     add sim_devices table entry
*/

#include "i1620_defs.h"

#define PCQ_SIZE        64                              /* must be 2**n */
#define PCQ_MASK        (PCQ_SIZE - 1)
#define PCQ_ENTRY       pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = saved_PC

#define HIST_PC         0x40000000
#define HIST_MIN        64
#define HIST_MAX        65536

typedef struct {
    uint16              vld;
    uint16              pc;
    uint8               inst[INST_LEN];
    } InstHistory;

uint8 M[MAXMEMSIZE] = { 0 };                            /* main memory */
uint32 saved_PC = 0;                                    /* saved PC */
uint32 IR2 = 1;                                         /* inst reg 2 */
uint32 PAR = 0;                                         /* P address */
uint32 QAR = 0;                                         /* Q address */
uint32 PR1 = 1;                                         /* proc reg 1 */
uint32 iae = 1;                                         /* ind addr enb */
uint32 idxe = 0;                                        /* index enable */
uint32 idxb = 0;                                        /* index band */
uint32 io_stop = 1;                                     /* I/O stop */
uint32 ar_stop = 1;                                     /* arith stop */
int32 ind_max = 16;                                     /* iadr nest limit */
uint16 pcq[PCQ_SIZE] = { 0 };                           /* PC queue */
int32 pcq_p = 0;                                        /* PC queue ptr */
REG *pcq_r = NULL;                                      /* PC queue reg ptr */
int32 hst_p = 0;                                        /* history pointer */
int32 hst_lnt = 0;                                      /* history length */
InstHistory *hst = NULL;                                /* instruction history */
uint8 ind[NUM_IND] = { 0 };                             /* indicators */

extern int32 sim_int_char;
extern int32 sim_interval;
extern uint32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
extern FILE *sim_log;

t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_opt1 (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_opt2 (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_model (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_save (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_table (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_hist (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, void *desc);

int32 get_2d (uint32 ad);
t_stat get_addr (uint32 alast, int32 lnt, t_bool indexok, uint32 *addr);
t_stat cvt_addr (uint32 alast, int32 lnt, t_bool signok, int32 *val);
t_stat get_idx (uint32 aidx);
t_stat xmt_field (uint32 d, uint32 s, uint32 skp);
t_stat xmt_record (uint32 d, uint32 s, t_bool cpy);
t_stat xmt_index (uint32 d, uint32 s);
t_stat xmt_divd (uint32 d, uint32 s);
t_stat xmt_tns (uint32 d, uint32 s);
t_stat xmt_tnf (uint32 d, uint32 s);
t_stat add_field (uint32 d, uint32 s, t_bool sub, t_bool sto, uint32 skp, int32 *sta);
uint32 add_one_digit (uint32 dst, uint32 src, uint32 *cry);
t_stat mul_field (uint32 mpc, uint32 mpy);
t_stat mul_one_digit (uint32 mpyd, uint32 mpcp, uint32 prop, uint32 last);
t_stat div_field (uint32 dvd, uint32 dvr, int32 *ez);
t_stat div_one_digit (uint32 dvd, uint32 dvr, uint32 max, uint32 *quod, uint32 *quop);
t_stat oct_to_dec (uint32 tbl, uint32 s);
t_stat dec_to_oct (uint32 d, uint32 tbl, int32 *ez);
t_stat or_field (uint32 d, uint32 s);
t_stat and_field (uint32 d, uint32 s);
t_stat xor_field (uint32 d, uint32 s);
t_stat com_field (uint32 d, uint32 s);
void upd_ind (void);

extern t_stat tty (uint32 op, uint32 pa, uint32 f0, uint32 f1);
extern t_stat ptp (uint32 op, uint32 pa, uint32 f0, uint32 f1);
extern t_stat ptr (uint32 op, uint32 pa, uint32 f0, uint32 f1);
extern t_stat cdp (uint32 op, uint32 pa, uint32 f0, uint32 f1);
extern t_stat cdr (uint32 op, uint32 pa, uint32 f0, uint32 f1);
extern t_stat dp (uint32 op, uint32 pa, uint32 f0, uint32 f1);
extern t_stat lpt (uint32 op, uint32 pa, uint32 f0, uint32 f1);
extern t_stat btp (uint32 op, uint32 pa, uint32 f0, uint32 f1);
extern t_stat btr (uint32 op, uint32 pa, uint32 f0, uint32 f1);

extern t_stat fp_add (uint32 d, uint32 s, t_bool sub);
extern t_stat fp_mul (uint32 d, uint32 s);
extern t_stat fp_div (uint32 d, uint32 s);
extern t_stat fp_fsl (uint32 d, uint32 s);
extern t_stat fp_fsr (uint32 d, uint32 s);

/* CPU data structures

   cpu_dev      CPU device descriptor
   cpu_unit     CPU unit descriptor
   cpu_reg      CPU register list
   cpu_mod      CPU modifier list
*/

UNIT cpu_unit = { UDATA (NULL, UNIT_FIX+UNIT_BCD+MI_STD, MAXMEMSIZE) };

REG cpu_reg[] = {
    { DRDATA (PC, saved_PC, 16), PV_LEFT },
    { DRDATA (IR2, IR2, 16), PV_LEFT },
    { DRDATA (PR1, PR1, 16), PV_LEFT },
    { DRDATA (PAR, PAR, 16), PV_LEFT + REG_RO },
    { DRDATA (QAR, QAR, 16), PV_LEFT + REG_RO },
    { FLDATA (SW1, ind[IN_SW1], 0) },
    { FLDATA (SW2, ind[IN_SW2], 0) },
    { FLDATA (SW3, ind[IN_SW3], 0) },
    { FLDATA (SW4, ind[IN_SW4], 0) },
    { FLDATA (HP, ind[IN_HP], 0) },
    { FLDATA (EZ, ind[IN_EZ], 0) },
    { FLDATA (OVF, ind[IN_OVF], 0) },
    { FLDATA (EXPCHK, ind[IN_EXPCHK], 0) },
    { FLDATA (RDCHK, ind[IN_RDCHK], 0) },
    { FLDATA (WRCHK, ind[IN_WRCHK], 0) },
    { FLDATA (ARSTOP, ar_stop, 0) },
    { FLDATA (IOSTOP, io_stop, 0) },
    { BRDATA (IND, ind, 10, 1, NUM_IND) },
    { FLDATA (IAE, iae, 0) },
    { FLDATA (IDXE, idxe, 0) },
    { FLDATA (IDXB, idxb, 0) },
    { DRDATA (INDMAX, ind_max, 16), REG_NZ + PV_LEFT },
    { BRDATA (PCQ, pcq, 10, 14, PCQ_SIZE), REG_RO+REG_CIRC },
    { ORDATA (PCQP, pcq_p, 6), REG_HRO },
    { ORDATA (WRU, sim_int_char, 8) },
    { NULL }
    };

MTAB cpu_mod[] = {
    { IF_IA, IF_IA, "IA", "IA", &cpu_set_opt1 },
    { IF_IA, 0, "no IA", "NOIA", &cpu_set_opt1 },
    { IF_EDT, IF_EDT, "EDT", "EDT", &cpu_set_opt1 },
    { IF_EDT, 0, "no EDT", "NOEDT", &cpu_set_opt1 },
    { IF_DIV, IF_DIV, "DIV", "DIV", &cpu_set_opt1 },
    { IF_DIV, 0, "no DIV", "NODIV", &cpu_set_opt1 },
    { IF_FP, IF_FP, "FP", "FP", NULL },
    { IF_FP, 0, "no FP", "NOFP", NULL },
    { IF_BIN, IF_BIN, "BIN", "BIN", &cpu_set_opt2 },
    { IF_BIN, 0, "no BIN", "NOBIN", &cpu_set_opt2 },
    { IF_IDX, IF_IDX, "IDX", "IDX", &cpu_set_opt2 },
    { IF_IDX, 0, "no IDX", "NOIDX", &cpu_set_opt2 },
    { IF_MII, IF_MII, "Model 2", "MOD2", &cpu_set_model },
    { IF_MII, 0, "Model 1", "MOD1", &cpu_set_model },
    { UNIT_MSIZE, 20000, NULL, "20K", &cpu_set_size },
    { UNIT_MSIZE, 40000, NULL, "40K", &cpu_set_size },
    { UNIT_MSIZE, 60000, NULL, "60K", &cpu_set_size },
    { UNIT_MSIZE, 0, NULL, "SAVE", &cpu_set_save },
    { UNIT_MSIZE, 0, NULL, "TABLE", &cpu_set_table },
    { MTAB_XTD|MTAB_VDV|MTAB_NMO|MTAB_SHP, 0, "HISTORY", "HISTORY",
      &cpu_set_hist, &cpu_show_hist },
    { 0 }
    };

DEVICE cpu_dev = {
    "CPU", &cpu_unit, cpu_reg, cpu_mod,
    1, 10, 18, 1, 16, 5,
    &cpu_ex, &cpu_dep, &cpu_reset,
    NULL, NULL, NULL
    };

/* Instruction table */

const int32 op_table[100] = {
    0,                                                  /* 0 */
    IF_FP + IF_VPA + IF_VQA,                            /* FADD */
    IF_FP + IF_VPA + IF_VQA,                            /* FSUB */
    IF_FP + IF_VPA + IF_VQA,                            /* FMUL */
    0,
    IF_FP + IF_VPA + IF_VQA,                            /* FSL */
    IF_FP + IF_MII + IF_VPA + IF_VQA,                   /* TFL */
    IF_FP + IF_MII + IF_VPA + IF_VQA,                   /* BTFL */
    IF_FP + IF_VPA + IF_VQA,                            /* FSR */
    IF_FP + IF_VPA + IF_VQA,                            /* FDV */
    IF_MII + IF_VPA + IF_IMM,                           /* 10: BTAM */
    IF_VPA + IF_IMM,                                    /* AM */
    IF_VPA + IF_IMM,                                    /* SM */
    IF_VPA + IF_IMM,                                    /* MM */
    IF_VPA + IF_IMM,                                    /* CM */
    IF_VPA + IF_IMM,                                    /* TDM */
    IF_VPA + IF_IMM,                                    /* TFM */
    IF_VPA + IF_IMM,                                    /* BTM */
    IF_DIV + IF_VPA + IF_IMM,                           /* LDM */
    IF_DIV + IF_VPA + IF_IMM,                           /* DM */
    IF_MII + IF_VPA + IF_VQA,                           /* 20: BTA */
    IF_VPA + IF_VQA,                                    /* A */
    IF_VPA + IF_VQA,                                    /* S */
    IF_VPA + IF_VQA,                                    /* M */
    IF_VPA + IF_VQA,                                    /* C */
    IF_VPA + IF_VQA,                                    /* TD */
    IF_VPA + IF_VQA,                                    /* TF */
    IF_VPA + IF_VQA,                                    /* BT */
    IF_DIV + IF_VPA + IF_VQA,                           /* LD */
    IF_DIV + IF_VPA + IF_VQA,                           /* D */
    IF_MII + IF_VPA + IF_VQA,                           /* 30: TRNM */
    IF_VPA + IF_VQA,                                    /* TR */
    IF_VPA,                                             /* SF */
    IF_VPA,                                             /* CF */
    IF_VPA,                                             /* K */
    IF_VPA,                                             /* DN */
    IF_VPA,                                             /* RN */
    IF_VPA,                                             /* RA */
    IF_VPA,                                             /* WN */
    IF_VPA,                                             /* WA */
    0,                                                  /* 40 */
    0,                                                  /* NOP */
    0,                                                  /* BB */
    IF_VPA + IF_VQA,                                    /* BD */
    IF_VPA + IF_VQA,                                    /* BNF */
    IF_VPA + IF_VQA,                                    /* BNR */
    IF_VPA,                                             /* BI */
    IF_VPA,                                             /* BNI */
    0,                                                  /* H */
    IF_VPA,                                             /* B */
    0,                                                  /* 50 */
    0,
    0,
    0,
    0,
    IF_VPA + IF_VQA,                                    /* BNG - disk sys */
    0,
    0,
    0,
    0,
    IF_MII + IF_VPA,                                    /* 60: BS */
    IF_IDX + IF_VPA + IF_NQX,                           /* BX */
    IF_IDX + IF_VPA + IF_IMM,                           /* BXM */
    IF_IDX + IF_VPA + IF_NQX,                           /* BCX */
    IF_IDX + IF_VPA + IF_IMM,                           /* BCXM */
    IF_IDX + IF_VPA + IF_NQX,                           /* BLX */
    IF_IDX + IF_VPA + IF_IMM,                           /* BLXM */
    IF_IDX + IF_VPA + IF_NQX,                           /* BSX */
    0,
    0,
    IF_IDX + IF_VPA + IF_VQA,                           /* 70: MA */
    IF_EDT + IF_VPA + IF_VQA,                           /* MF */
    IF_EDT + IF_VPA + IF_VQA,                           /* MF */
    IF_EDT + IF_VPA + IF_VQA,                           /* TNF */
    0,
    0,
    0,
    0,
    0,
    0,
    0,                                                  /* 80 */
    0,
    0,
    0,
    0,
    0,
    0,
    0,
    0,
    0,
    IF_BIN + IF_VPA + IF_4QA,                           /* 90: BBT */
    IF_BIN + IF_VPA + IF_4QA,                           /* BMK */
    IF_BIN + IF_VPA + IF_VQA,                           /* ORF */
    IF_BIN + IF_VPA + IF_VQA,                           /* ANDF */
    IF_BIN + IF_VPA + IF_VQA,                           /* CPLF */
    IF_BIN + IF_VPA + IF_VQA,                           /* EORF */
    IF_BIN + IF_VPA + IF_VQA,                           /* OTD */
    IF_BIN + IF_VPA + IF_VQA,                           /* DTO */
    0,
    0
    };

/* IO dispatch table */

t_stat (*iodisp[NUM_IO])(uint32 op, uint32 pa, uint32 f0, uint32 f1) = {
    NULL, &tty, &ptp, &ptr, &cdp,                       /* 00 - 09 */
    &cdr, NULL, &dp,  NULL, &lpt,
    NULL, NULL, NULL, NULL, NULL,                       /* 10 - 19 */
    NULL, NULL, NULL, NULL, NULL,
    NULL, NULL, NULL, NULL, NULL,                       /* 20 - 29 */
    NULL, NULL, NULL, NULL, NULL,
    NULL, NULL, &btp, &btr, NULL,                       /* 30 - 39 */
    NULL, NULL, NULL, NULL, NULL,
    NULL, NULL, NULL, NULL, NULL,                       /* 40 - 49 */
    NULL, NULL, NULL, NULL, NULL,
    NULL, NULL, NULL, NULL, NULL,                       /* 50 - 59 */
    NULL, NULL, NULL, NULL, NULL,
    NULL, NULL, NULL, NULL, NULL,                       /* 60 - 69 */
    NULL, NULL, NULL, NULL, NULL,
    NULL, NULL, NULL, NULL, NULL,                       /* 70 - 79 */
    NULL, NULL, NULL, NULL, NULL,
    NULL, NULL, NULL, NULL, NULL,                       /* 80 - 89 */
    NULL, NULL, NULL, NULL, NULL,
    NULL, NULL, NULL, NULL, NULL,                       /* 90 - 99 */
    NULL, NULL, NULL, NULL, NULL
    };

/* Indicator table: -1 = illegal, +1 = resets when tested */

const int32 ind_table[NUM_IND] = {
    -1,  0,  0,  0,  0, -1,  1,  1, -1,  1,             /* 00 - 09 */
    -1,  0,  0,  0,  1,  1,  1,  1, -1,  0,             /* 10 - 19 */
    -1, -1, -1, -1, -1,  0, -1, -1, -1, -1,             /* 20 - 29 */
     0,  0,  0,  1,  1,  0,  1,  1,  1,  0,             /* 30 - 39 */
    -1, -1,  1, -1, -1, -1, -1, -1, -1, -1,             /* 40 - 49 */
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,             /* 50 - 59 */
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,             /* 60 - 69 */
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,             /* 70 - 79 */
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,             /* 80 - 89 */
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1              /* 90 - 99 */
    };

/* Add table for 1620 Model 1 */

const uint8 std_add_table[ADD_TABLE_LEN] = {
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
    0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10,
    0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11,
    0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12,
    0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13,
    0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14,
    0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
    0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
    0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
    0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
    };

/* Add table for 1620 Model 2 ("hardware add") */

const uint8 sum_table[20] = {
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
    0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19
    };

/* Multiply table */

const uint8 std_mul_table[MUL_TABLE_LEN] = {
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 0, 2, 0, 3, 0, 4, 0,
    0, 0, 2, 0, 4, 0, 6, 0, 8, 0,
    0, 0, 3, 0, 6, 0, 9, 0, 2, 1,
    0, 0, 4, 0, 8, 0, 2, 1, 6, 1,
    0, 0, 5, 0, 0, 1, 5, 1, 0, 2,
    0, 0, 6, 0, 2, 1, 8, 1, 4, 2,
    0, 0, 7, 0, 4, 1, 1, 2, 8, 2,
    0, 0, 8, 0, 6, 1, 4, 2, 2, 3,
    0, 0, 9, 0, 8, 1, 7, 2, 6, 3,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    5, 0, 6, 0, 7, 0, 8, 0, 9, 0,
    0, 1, 2, 1, 4, 1, 6, 1, 8, 1,
    5, 1, 8, 1, 1, 2, 4, 2, 7, 2,
    0, 2, 4, 2, 8, 2, 2, 3, 6, 3,
    5, 2, 0, 3, 5, 3, 0, 4, 5, 4,
    0, 3, 6, 3, 2, 4, 8, 4, 4, 5,
    5, 3, 2, 4, 9, 4, 6, 5, 3, 6,
    0, 4, 8, 4, 6, 5, 4, 6, 2, 7,
    5, 4, 4, 5, 3, 6, 2, 7, 1, 8
    };

#define BRANCH(x)       PCQ_ENTRY; PC = (x)
#define GET_IDXADDR(x)  ((idxb? IDX_B: IDX_A) + ((x) * ADDR_LEN) + (ADDR_LEN - 1))

t_stat sim_instr (void)
{
uint32 PC, pla, qla, f0, f1;
int32 i, t, idx, flags, sta, dev, op;
t_stat reason;

/* Restore saved state */

PC = saved_PC;
if ((cpu_unit.flags & IF_IA) == 0)
    iae = 0;
if ((cpu_unit.flags & IF_IDX) == 0)
    idxe = idxb = 0;
upd_ind ();                                             /* update indicators */
reason = 0;

/* Main instruction fetch/decode loop */

while (reason == 0) {                                   /* loop until halted */

    saved_PC = PC;                                      /* commit prev instr */
    if (sim_interval <= 0) {                            /* check clock queue */
        if (reason = sim_process_event ())
            break;
        }

    if (sim_brk_summ && sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
        reason = STOP_IBKPT;                            /* stop simulation */
        break;
		}

    sim_interval = sim_interval - 1;

/* Instruction fetch and address decode */

    if (PC & 1) {                                       /* PC odd? */
        reason = STOP_INVIAD;                           /* stop */
        break;
        }

    op = get_2d (PC);                                   /* get opcode */
    if (op < 0) {                                       /* invalid? */
        reason = STOP_INVINS;
        break;
        }
    flags = op_table[op];                               /* get op, flags */
    if ((flags & ALLOPT) &&                             /* need option? */
        !(flags & ALLOPT & cpu_unit.flags)) {           /* any set? */
        reason = STOP_INVINS;                           /* no, error */
        break;
        }

    pla = ADDR_A (PC, I_PL);                            /* P last addr */
    qla = ADDR_A (PC, I_QL);                            /* Q last addr */
    if (flags & IF_VPA) {                               /* need P? */
        reason = get_addr (pla, 5, TRUE, &PAR);         /* get P addr */
        if (reason != SCPE_OK)                          /* stop if error */
            break;
        }
    if (flags & (IF_VQA | IF_4QA | IF_NQX)) {           /* need Q? */
        reason = get_addr (qla,                         /* get Q addr */
            ((flags & IF_4QA)? 4: 5),                   /* 4 or 5 digits */
            ((flags & IF_NQX)? FALSE: TRUE),            /* not or indexed */
            &QAR);
        if (reason != SCPE_OK) {                        /* stop if invalid */
            reason = reason + (STOP_INVQDG - STOP_INVPDG);
            break;
            }
        }
    else if (flags & IF_IMM)                             /* immediate? */
        QAR = qla;

    if (hst_lnt) {                                      /* history enabled? */
        hst_p = (hst_p + 1);                            /* next entry */
        if (hst_p >= hst_lnt)
            hst_p = 0;
        hst[hst_p].vld = 1;
        hst[hst_p].pc = PC;     
        for (i = 0; i < INST_LEN; i++)
            hst[hst_p].inst[i] = M[(PC + i) % MEMSIZE];
        }

    PC = PC + INST_LEN;                                 /* advance PC */
    switch (op) {                                       /* case on op */

/* Transmit digit - P,Q are valid */

    case OP_TD:
    case OP_TDM:
        M[PAR] = M[QAR] & (FLAG | DIGIT);               /* move dig, flag */
        break;

/* Transmit field - P,Q are valid */

    case OP_TF:
    case OP_TFM:
        reason = xmt_field (PAR, QAR, 1);               /* xmit field */
        break;

/* Transmit record - P,Q are valid */

    case OP_TR:
        reason = xmt_record (PAR, QAR, TRUE);           /* xmit record */
        break;

/* Transmit record no record mark - P,Q are valid */

    case OP_TRNM:
        reason = xmt_record (PAR, QAR, FALSE);          /* xmit record but */
        break;                                          /* not rec mark */

/* Set flag - P is valid */

    case OP_SF:
        M[PAR] = M[PAR] | FLAG;                         /* set flag on P */
        break;

/* Clear flag - P is valid */

    case OP_CF:
        M[PAR] = M[PAR] & ~FLAG;                        /* clear flag on P */
        break;

/* Branch - P is valid */

    case OP_B:
        BRANCH (PAR);                                   /* branch to P */
        break;

/* Branch and transmit - P,Q are valid */

    case OP_BT:
    case OP_BTM:
        reason = xmt_field (ADDR_S (PAR, 1), QAR, 1);   /* xmit field to P-1 */
        IR2 = PC;                                       /* save PC */
        BRANCH (PAR);                                   /* branch to P */
        break;

/* Branch and transmit floating - P,Q are valid */

    case OP_BTFL:
        reason = xmt_field (ADDR_S (PAR, 1), QAR, 3);   /* skip 3 flags */
        IR2 = PC;                                       /* save PC */
        BRANCH (PAR);                                   /* branch to P */
        break;

/* Branch and transmit address - P,Q are valid */

    case OP_BTA:
    case OP_BTAM:
        reason = xmt_field (ADDR_S (PAR, 1), QAR, 4);   /* skip 4 flags */
        IR2 = PC;                                       /* save PC */
        BRANCH (PAR);                                   /* branch to P */
        break;

/* Branch back */

    case OP_BB:
        if (PR1 != 1) {                                 /* PR1 valid? */
            BRANCH (PR1);                               /* return to PR1 */
            PR1 = 1;                                    /* invalidate */
            }
        else if (IR2 != 1) {                            /* IR2 valid? */
            BRANCH (IR2);                               /* return to IR2 */
            IR2 = 1;                                    /* invalidate */
            }
        else reason = STOP_INVRTN;                      /* MAR check */
        break;

/* Branch on digit (not zero) - P,Q are valid */

    case OP_BD:
        if ((M[QAR] & DIGIT) != 0) {                    /* digit != 0? */
            BRANCH (PAR);                               /* branch */
            }
        break;

/* Branch no flag - P,Q are valid */

    case OP_BNF:
        if ((M[QAR] & FLAG) == 0) {                     /* flag == 0? */
            BRANCH (PAR);                               /* branch */
            }
        break;

/* Branch no record mark (8-2 not set) - P,Q are valid */

    case OP_BNR:
        if ((M[QAR] & REC_MARK) != REC_MARK) {          /* not rec mark? */
            BRANCH (PAR);                               /* branch */
            }
        break;

/* Branch no group mark - P,Q are valid */

    case OP_BNG:
        if ((M[QAR] & DIGIT) != GRP_MARK) {             /* not grp mark? */
            BRANCH (PAR);                               /* branch */
            }
        break;

/* Branch (no) indicator - P is valid */

    case OP_BI:
    case OP_BNI:
        upd_ind ();                                     /* update indicators */
        t = get_2d (ADDR_A (saved_PC, I_BR));           /* get ind number */
        if ((t < 0) || (ind_table[t] < 0)) {            /* not valid? */
            reason = STOP_INVIND;                       /* stop */
            break;
            }
        if ((ind[t] != 0) ^ (op == OP_BNI)) {           /* ind value correct? */
            BRANCH (PAR);                               /* branch */
            }
        if (ind_table[t] > 0)                           /* reset if needed */
            ind[t] = 0;
        break;

/* Add/subtract/compare - P,Q are valid */

    case OP_A:
    case OP_AM:
        reason = add_field (PAR, QAR, FALSE, TRUE, 0, &sta); /* add, store */
        if (sta == ADD_CARRY)                           /* cout => ovflo */
            ind[IN_OVF] = 1;
        if (ar_stop && ind[IN_OVF])
            reason = STOP_OVERFL;
        break;

    case OP_S:
    case OP_SM:
        reason = add_field (PAR, QAR, TRUE, TRUE, 0, &sta); /* sub, store */
        if (sta == ADD_CARRY)                           /* cout => ovflo */
            ind[IN_OVF] = 1;
        if (ar_stop && ind[IN_OVF])
            reason = STOP_OVERFL;
        break;

    case OP_C:
    case OP_CM:
        reason = add_field (PAR, QAR, TRUE, FALSE, 0, &sta); /* sub, nostore */
        if (sta == ADD_CARRY)                           /* cout => ovflo */
            ind[IN_OVF] = 1;
        if (ar_stop && ind[IN_OVF])
            reason = STOP_OVERFL;
        break;

/* Multiply - P,Q are valid */

    case OP_M:
    case OP_MM:
        reason = mul_field (PAR, QAR);                  /* multiply */
        break;

/* IO instructions - P is valid */

    case OP_RA:
    case OP_WA:
        if ((PAR & 1) == 0) {                           /* P even? */
            reason = STOP_INVEAD;                       /* stop */
            break;
            }
    case OP_K:
    case OP_DN:
    case OP_RN:
    case OP_WN:
        dev = get_2d (ADDR_A (saved_PC, I_IO));         /* get IO dev */
        f0 = M[ADDR_A (saved_PC, I_CTL)] & DIGIT;       /* get function */
        f1 = M[ADDR_A (saved_PC, I_CTL + 1)] & DIGIT;
        if ((dev < 0) || (iodisp[dev] == NULL))         /* undefined dev? */
            reason = STOP_INVIO;                        /* stop */
        else reason = iodisp[dev] (op, PAR, f0, f1);    /* call device */
        break;

/* Divide special feature instructions */

    case OP_LD:
    case OP_LDM:
        for (i = 0; i < PROD_AREA_LEN; i++)             /* clear prod area */
            M[PROD_AREA + i] = 0;
        t = M[QAR] & FLAG;                              /* save Q sign */
        reason = xmt_divd (PAR, QAR);                   /* xmit dividend */
        M[PROD_AREA + PROD_AREA_LEN - 1] |= t;          /* set sign */
        break;

/* Divide - P,Q are valid */

    case OP_D:
    case OP_DM:
        reason = div_field (PAR, QAR, &t);              /* divide */
        ind[IN_EZ] = t;                                 /* set indicator */
        if ((reason == STOP_OVERFL) && !ar_stop)        /* ovflo stop? */
            reason = SCPE_OK;                           /* no */
        break;

/* Edit special feature instructions */

/* Move flag - P,Q are valid */

    case OP_MF:
        M[PAR] = (M[PAR] & ~FLAG) | (M[QAR] & FLAG);    /* copy Q flag */
        M[QAR] = M[QAR] & ~FLAG;                        /* clr Q flag */
        break;

/* Transmit numeric strip - P,Q are valid, P is source */

    case OP_TNS:
        if ((PAR & 1) == 0) {                           /* P must be odd */
            reason = STOP_INVEAD;
            break;
            }
        reason = xmt_tns (QAR, PAR);                    /* xmit and strip */
        break;

/* Transmit numeric fill - P,Q are valid */

    case OP_TNF:
        if ((PAR & 1) == 0) {                           /* P must be odd */
            reason = STOP_INVEAD;
            break;
            }
        reason = xmt_tnf (PAR, QAR);                    /* xmit and strip */
        break;

/* Index special feature instructions */

/* Move address - P,Q are valid */

    case OP_MA:
        for (i = 0; i < ADDR_LEN; i++) {                /* move 5 digits */
            M[PAR] = (M[PAR] & FLAG) | (M[QAR] & DIGIT);
            MM (PAR); MM (QAR);
            }
        break;

/* Branch load index - P,Q are valid, Q not indexed */

    case OP_BLX:
    case OP_BLXM:
        idx = get_idx (ADDR_A (saved_PC, I_QL - 1));    /* get index */
        if (idx < 0) {                                  /* disabled? */
            reason = STOP_INVIDX;                       /* stop */
            break;
            }
        xmt_index (GET_IDXADDR (idx), QAR);             /* copy Q to idx */
        BRANCH (PAR);                                   /* branch to P */
        break;

/* Branch store index - P,Q are valid, Q not indexed */

    case OP_BSX:
        idx = get_idx (ADDR_A (saved_PC, I_QL - 1));    /* get index */
        if (idx < 0) {                                  /* disabled? */
            reason = STOP_INVIDX;                       /* stop */
            break;
            }
        xmt_index (QAR, GET_IDXADDR (idx));             /* copy idx to Q */
        BRANCH (PAR);                                   /* branch to P */
        break;

/* Branch and modify index - P,Q are valid, Q not indexed */

    case OP_BX:
        idx = get_idx (ADDR_A (saved_PC, I_QL - 1));    /* get index */
        if (idx < 0) {                                  /* disabled? */
            reason = STOP_INVIDX;                       /* stop */
            break;
            }
        reason = add_field (GET_IDXADDR (idx), QAR, FALSE, TRUE, 0, &sta);
        if (ar_stop && ind[IN_OVF])
            reason = STOP_OVERFL;
        BRANCH (PAR);                                   /* branch to P */
        break;

    case OP_BXM:
        idx = get_idx (ADDR_A (saved_PC, I_QL - 1));    /* get index */
        if (idx < 0) {                                  /* disabled? */
            reason = STOP_INVIDX;                       /* stop */
            break;
            }
        reason = add_field (GET_IDXADDR (idx), QAR, FALSE, TRUE, 3, &sta);
        if (ar_stop && ind[IN_OVF])
            reason = STOP_OVERFL;
        BRANCH (PAR);                                   /* branch to P */
        break;

/* Branch conditionally and modify index - P,Q are valid, Q not indexed */

    case OP_BCX:
        idx = get_idx (ADDR_A (saved_PC, I_QL - 1));    /* get index */
        if (idx < 0) {                                  /* disabled? */
            reason = STOP_INVIDX;                       /* stop */
            break;
            }
        reason = add_field (GET_IDXADDR (idx), QAR, FALSE, TRUE, 0, &sta);
        if (ar_stop && ind[IN_OVF])
            reason = STOP_OVERFL;
        if ((ind[IN_EZ] == 0) && (sta == ADD_NOCRY)) {  /* ~z, ~c, ~sign chg? */
            BRANCH (PAR);                               /* branch */
			}
        break;

    case OP_BCXM:
        idx = get_idx (ADDR_A (saved_PC, I_QL - 1));    /* get index */
        if (idx < 0) {                                  /* disabled? */
            reason = STOP_INVIDX;                       /* stop */
            break;
            }
        reason = add_field (GET_IDXADDR (idx), QAR, FALSE, TRUE, 3, &sta);
        if (ar_stop && ind[IN_OVF])
            reason = STOP_OVERFL;
        if ((ind[IN_EZ] == 0) && (sta == ADD_NOCRY)) {  /* ~z, ~c, ~sign chg? */
            BRANCH (PAR);                               /* branch */
			}
        break;

/* Branch and select - P is valid */

    case OP_BS:
        t = M[ADDR_A (saved_PC, I_SEL)] & DIGIT;        /* get select */
        switch (t) {                                    /* case on select */
        case 0:
            idxe = idxb = 0;                            /* indexing off */
            break;
        case 1:
            idxe = 1; idxb = 0;                         /* index band A */
            break;
        case 2:
            idxe = idxb = 1;                            /* index band B */
            break;
        case 8:
            iae = 0;                                    /* indirect off */
            break;
        case 9:
            iae = 1;                                    /* indirect on */
            break;
        default:
            reason = STOP_INVSEL;                       /* undefined */
            break;
			}
        BRANCH (PAR);
        break;

/* Binary special feature instructions */

/* Branch on bit - P,Q are valid, Q is 4d address */

    case OP_BBT:
        t = M[ADDR_A (saved_PC, I_Q)];                  /* get Q0 digit */
        if (t & M[QAR] & DIGIT) {                       /* match to mem? */
            BRANCH (PAR);                               /* branch */
            }
        break;

/* Branch on mask - P,Q are valid, Q is 4d address */

    case OP_BMK:
        t = M[ADDR_A (saved_PC, I_Q)];                  /* get Q0 digit */
        if (((t ^ M[QAR]) &                             /* match to mem? */
            ((t & FLAG)? (FLAG + DIGIT): DIGIT)) == 0) {
            BRANCH (PAR);                               /* branch */
            }
        break;

/* Or - P,Q are valid */

    case OP_ORF:
        reason = or_field (PAR, QAR);                   /* OR fields */
        break;

/* AND - P,Q are valid */

    case OP_ANDF:
        reason = and_field (PAR, QAR);                  /* AND fields */
        break;

/* Exclusive or - P,Q are valid */

    case OP_EORF:
        reason = xor_field (PAR, QAR);                  /* XOR fields */
        break;

/* Complement - P,Q are valid */

    case OP_CPLF:
        reason = com_field (PAR, QAR);                  /* COM field */
        break;

/* Octal to decimal - P,Q are valid */

    case OP_OTD:
        reason = oct_to_dec (PAR, QAR);                 /* convert */
        break;

/* Decimal to octal - P,Q are valid */

    case OP_DTO:
        reason = dec_to_oct (PAR, QAR, &t);             /* convert */
        ind[IN_EZ] = t;                                 /* set indicator */
        if (ar_stop && ind[IN_OVF])
            reason = STOP_OVERFL;
        break;

/* Floating point special feature instructions */

    case OP_FADD:
        reason = fp_add (PAR, QAR, FALSE);              /* add */
        if (ar_stop && ind[IN_EXPCHK])
            reason = STOP_EXPCHK;
        break;

    case OP_FSUB:
        reason = fp_add (PAR, QAR, TRUE);               /* subtract */
        if (ar_stop && ind[IN_EXPCHK])
            reason = STOP_EXPCHK;
        break;

    case OP_FMUL:
        reason = fp_mul (PAR, QAR);                     /* multiply */
        if (ar_stop && ind[IN_EXPCHK])
            reason = STOP_EXPCHK;
        break;

    case OP_FDIV:
        reason = fp_div (PAR, QAR);                     /* divide */
        if (ar_stop && ind[IN_OVF])
            reason = STOP_FPDVZ;
        if (ar_stop && ind[IN_EXPCHK])
            reason = STOP_EXPCHK;
        break;

    case OP_FSL:
        reason = fp_fsl (PAR, QAR);                     /* shift left */
        break;

    case OP_FSR:
        reason = fp_fsr (PAR, QAR);                     /* shift right */
        break;

/* Halt */

    case OP_H:
        saved_PC = PC;                                  /* commit inst */
        reason = STOP_HALT;                             /* stop */
        break;

/* NOP */

    case OP_NOP:
        break;

/* Invalid instruction code */

    default:
        reason = STOP_INVINS;                           /* stop */
        break;
        }                                               /* end switch */
    }                                                   /* end while */

/* Simulation halted */

pcq_r->qptr = pcq_p;                                    /* update pc q ptr */
upd_ind ();
return reason;
}

/* Utility routines */

/* Get 2 digit field

   Inputs:
        ad      =       address of high digit
   Outputs:
        val     =       field converted to binary
                        -1 if bad digit
*/

int32 get_2d (uint32 ad)
{
int32 d, d1;

d = M[ad] & DIGIT;                                      /* get 1st digit */
d1 = M[ADDR_A (ad, 1)] & DIGIT;                         /* get 2nd digit */
if (BAD_DIGIT (d) || BAD_DIGIT (d1))                    /* bad? error */
    return -1; 
return ((d * 10) + d1);                                 /* cvt to binary */
}

/* Get address routine

   Inputs:
        alast   =       address of low digit
        lnt     =       length
        indexok =       TRUE if indexing allowed
        &addr   =       pointer to address output
   Output:
        return  =       error status (in terms of P address)
        addr    =       address converted to binary

   Notes:
   - If indexing produces a negative result, the effective address is
     the 10's complement of the result
   - An address that exceeds memory produces a MAR check stop
*/

t_stat get_addr (uint32 alast, int32 lnt, t_bool indexok, uint32 *reta)
{
uint8 indir;
int32 cnt, idx, idxa, idxv, addr;

if (iae)                                                /* init indirect */
    indir = FLAG;
else indir = 0;

cnt = 0;                                                /* count depth */
do {
    indir = indir & M[alast];                           /* get indirect */
    if (cvt_addr (alast, lnt, FALSE, &addr))            /* cvt addr to bin */
        return STOP_INVPDG;                             /* bad? */
    idx = get_idx (ADDR_S (alast, 1));                  /* get index reg num */
    if (indexok && (idx > 0)) {                         /* indexable? */
        idxa = GET_IDXADDR (idx);                       /* get idx reg addr */
        if (cvt_addr (idxa, ADDR_LEN, TRUE, &idxv))     /* cvt idx reg */
            return STOP_INVPDG;
        addr = addr + idxv;                             /* add in index */
        if (addr < 0)                                   /* -? 10's comp */
            addr = addr + 100000;
        }
    if (addr >= (int32) MEMSIZE)                        /* invalid addr? */
        return STOP_INVPAD;
    alast = addr;                                       /* new address */
    lnt = ADDR_LEN;                                     /* std len */
    } while (indir && (cnt++ < ind_max));
if (cnt > ind_max)                                      /* indir too deep? */
    return STOP_INVPIA;
*reta = addr;                                           /* return address */
return SCPE_OK;
}

/* Convert address to binary

   Inputs:
        alast   =       address of low digit
        lnt     =       length
        signok  =       TRUE if signed
        val     =       address of output
   Outputs:
        status  =       0 if ok, != 0 if error
*/

t_stat cvt_addr (uint32 alast, int32 lnt, t_bool signok, int32 *val)
{
int32 sign = 0, addr = 0, t;

if (signok && (M[alast] & FLAG))                        /* signed? */
    sign = 1;
alast = alast - lnt;                                    /* find start */
do {
    PP (alast);                                         /* incr mem addr */
    t = M[alast] & DIGIT;                               /* get digit */
    if (BAD_DIGIT (t))                                  /* bad? error */
        return STOP_INVDIG;
    addr = (addr * 10) + t;                             /* cvt to bin */
    } while (--lnt > 0);
if (sign)                                               /* minus? */
    *val = -addr;
else *val = addr;
return SCPE_OK;
}

/* Get index register number

   Inputs:
        aidx    =       address of low digit
   Outputs:
        index   =       >0 if indexed
                        =0 if not indexed
                        <0 if indexing disabled
*/

t_stat get_idx (uint32 aidx)
{
int32 i, idx;

if (idxe == 0)                                          /* indexing off? */
    return -1;
for (i = idx = 0; i < 3; i++) {                         /* 3 flags worth */
    if (M[aidx] & FLAG)                                 /* test flag */
        idx = idx | (1 << i);
    MM (aidx);                                          /* next digit */
    }
return idx;
}

/* Update indicators routine */

void upd_ind (void)
{
ind[IN_HPEZ] = ind[IN_HP] | ind[IN_EZ];                 /* HPEZ = HP | EZ */
ind[IN_DERR] = ind[IN_DACH] | ind[IN_DWLR] | ind[IN_DCYO];
ind[IN_ANYCHK] = ind[IN_RDCHK] | ind[IN_WRCHK] |        /* ANYCHK = all chks */
    ind[IN_MBREVEN] | ind[IN_MBRODD] |
    ind[IN_PRCHK] | ind[IN_DACH];
ind[IN_IXN] = ind[IN_IXA] = ind[IN_IXB] = 0;            /* clr index indics */
if (!idxe)                                              /* off? */
    ind[IN_IXN] = 1;
else if (!idxb)                                         /* on, band A? */
    ind[IN_IXA] = 1;
else ind[IN_IXB] = 1;                                   /* no, band B */
return;
}

/* Transmit routines */

/* Transmit field from 's' to 'd' - ignore first 'skp' flags */

t_stat xmt_field (uint32 d, uint32 s, uint32 skp)
{
uint32 cnt = 0;
uint8 t;

do {
    t = M[d] = M[s] & (FLAG | DIGIT);                   /* copy src to dst */
    MM (d);                                             /* decr mem addrs */
    MM (s);
    if (cnt++ >= MEMSIZE)                               /* (stop runaway) */
        return STOP_FWRAP;
    } while (((t & FLAG) == 0) || (cnt <= skp));        /* until flag */
return SCPE_OK;
}

/* Transmit record from 's' to 'd' - copy record mark if 'cpy' = TRUE */

t_stat xmt_record (uint32 d, uint32 s, t_bool cpy)
{
uint32 cnt = 0;

while ((M[s] & REC_MARK) != REC_MARK) {                 /* until rec mark */
    M[d] = M[s] & (FLAG | DIGIT);                       /* copy src to dst */
    PP (d);                                             /* incr mem addrs */
    PP (s);
    if (cnt++ >= MEMSIZE)                               /* (stop runaway) */
        return STOP_FWRAP;
    }
if (cpy)                                                /* copy rec mark */
    M[d] = M[s] & (FLAG | DIGIT);
return SCPE_OK;
}

/* Transmit index from 's' to 'd' - fixed five character field */

t_stat xmt_index (uint32 d, uint32 s)
{
int32 i;

M[d] = M[s] & (FLAG | DIGIT);                           /* preserve sign */
MM (d); MM (s);                                         /* decr mem addrs */
for (i = 0; i < ADDR_LEN - 2; i++) {                    /* copy 3 digits */
    M[d] = M[s] & DIGIT;                                /* without flags */
    MM (d);                                             /* decr mem addrs */
    MM (s);
    }
M[d] = (M[s] & DIGIT) | FLAG;                           /* set flag on last */
return SCPE_OK;
}

/* Transmit dividend from 'd' to 's' - clear flag on first digit */

t_stat xmt_divd (uint32 d, uint32 s)
{
uint32 cnt = 0;

M[d] = M[s] & DIGIT;                                    /* first w/o flag */
do {
    MM (d);                                             /* decr mem addrs */
    MM (s);
    M[d] = M[s] & (FLAG | DIGIT);                       /* copy src to dst */
    if (cnt++ >= MEMSIZE)                               /* (stop runaway) */
        return STOP_FWRAP;
    } while ((M[d] & FLAG) == 0);                       /* until src flag */
return SCPE_OK;
}

/* Transmit numeric strip from 's' to 'd' - s is odd */

t_stat xmt_tns (uint32 d, uint32 s)
{
uint32 cnt = 0;
uint8 t, z;

t = M[s] & DIGIT;                                       /* get units */
z = M[s - 1] & DIGIT;                                   /* get zone */
if ((z == 1) || (z == 5) || ((z == 2) && (t == 0)))     /* 1x, 5x, 20? */
    M[d] = t | FLAG;                                    /* set flag */
else M[d] = t;                                          /* else clear flag */
do {
    MM (d);                                             /* decr mem addrs */
    s = ADDR_S (s, 2);
    t = M[d] & FLAG;                                    /* save dst flag */
    M[d] = M[s] & (FLAG | DIGIT);                       /* copy src to dst */
    if (cnt >= MEMSIZE)                                 /* (stop runaway) */
        return STOP_FWRAP;
    cnt = cnt + 2;
    } while (t == 0);                                   /* until dst flag */
M[d] = M[d] | FLAG;                                     /* set flag at end */
return SCPE_OK;
}

/* Transmit numeric fill from 's' to 'd' - d is odd */

t_stat xmt_tnf (uint32 d, uint32 s)
{
uint32 cnt = 0;
uint8 t;

t = M[s];                                               /* get 1st digit */
M[d] = t & DIGIT;                                       /* store */
M[d - 1] = (t & FLAG)? 5: 7;                            /* set sign from flag */
do {
    MM (s);                                             /* decr mem addr */
    d = ADDR_S (d, 2);
    t = M[s];                                           /* get src digit */
    M[d] = t & DIGIT;                                   /* move to dst, no flag */
    M[d - 1] = 7;                                       /* set zone */
    if (cnt >= MEMSIZE)                                 /* (stop runaway) */
        return STOP_FWRAP;
    cnt = cnt + 2;
    } while ((t & FLAG) == 0);                          /* until src flag */
return SCPE_OK;
}

/* Add routine

   Inputs:
        d       =       destination field low (P)
        s       =       source field low (Q)
        sub     =       TRUE if subtracting
        sto     =       TRUE if storing
        skp     =       number of source field flags, beyond sign, to ignore
   Output:
        return  =       status
        sta     =       ADD_NOCRY: no carry out, no sign change
                        ADD_SCHNG: sign change
                        ADD_CARRY: carry out

   Reference Manual: "When the sum is zero, the sign of the P field
   is retained."
*/

t_stat add_field (uint32 d, uint32 s, t_bool sub, t_bool sto, uint32 skp, int32 *sta)
{
uint32 cry, src, dst, res, comp, dp, dsv;
uint32 src_f = 0, cnt = 0, dst_f;

*sta = ADD_NOCRY;                                       /* assume no cry */
dsv = d;                                                /* save dst */
comp = ((M[d] ^ M[s]) & FLAG) ^ (sub? FLAG: 0);         /* set compl flag */
cry = 0;                                                /* clr carry */
ind[IN_HP] = ((M[d] & FLAG) == 0);                      /* set sign from res */
ind[IN_EZ] = 1;                                         /* assume zero */

dst = M[d] & DIGIT;                                     /* 1st digits */
src = M[s] & DIGIT;
if (BAD_DIGIT (dst) || BAD_DIGIT (src))                 /* bad digit? */
     return STOP_INVDIG;
if (comp)                                               /* complement? */
    src = 10 - src;
res = add_one_digit (dst, src, &cry);                   /* add */
if (sto)                                                /* store */
    M[d] = (M[d] & FLAG) | res;
MM (d); MM (s);                                         /* decr mem addrs */
do {
    dst = M[d] & DIGIT;                                 /* get dst digit */
    dst_f = M[d] & FLAG;                                /* get dst flag */
    if (src_f)                                          /* src done? src = 0 */
        src = 0;
    else {
        src = M[s] & DIGIT;                             /* get src digit */
        if (cnt >= skp)                                 /* get src flag */
            src_f = M[s] & FLAG;
        MM (s);                                         /* decr src addr */
        }
    if (BAD_DIGIT (dst) || BAD_DIGIT (src))             /* bad digit? */
        return STOP_INVDIG;
    if (comp)                                           /* complement? */
        src = 9 - src;
    res = add_one_digit (dst, src, &cry);               /* add */
    if (sto)                                            /* store */
        M[d] = dst_f | res;
    MM (d);                                             /* decr dst addr */
    if (cnt++ >= MEMSIZE)                               /* (stop runaway) */
        return STOP_FWRAP;
    } while (dst_f == 0);                               /* until dst done */
if (!src_f)                                             /* !src done? ovf */
    ind[IN_OVF] = 1;
if (comp && !cry && !ind[IN_EZ]) {                      /* recomp needed? */
    ind[IN_HP] = ind[IN_HP] ^ 1;                        /* flip indicator */
    if (sto) {                                          /* storing? */
        for (cry = 1, dp = dsv; dp != d; ) {            /* rescan */
            dst = M[dp] & DIGIT;                        /* get dst digit */
            res = add_one_digit (9 - dst, 0, &cry);     /* "add" */
            M[dp] = (M[dp] & FLAG) | res;               /* store */
            MM (dp);                                    /* decr dst addr */
            }
        M[dsv] = M[dsv] ^ FLAG;                         /* compl sign */
        }
    *sta = ADD_SIGNC;                                   /* sign changed */
    return SCPE_OK;     
    }                                                   /* end if recomp */
if (ind[IN_EZ])                                         /* res = 0? clr HP */
    ind[IN_HP] = 0;
if (!comp && cry)                                       /* set status */
    *sta = ADD_CARRY;
return SCPE_OK;
}

/* Add one digit via table (Model 1) or "hardware" (Model 2) */

uint32 add_one_digit (uint32 dst, uint32 src, uint32 *cry)
{
uint32 res;

if (*cry) src = src + 1;                                /* cry in? incr src */
if (src >= 10) {                                        /* src > 10? */
    src = src - 10;                                     /* src -= 10 */
    *cry = 1;                                           /* carry out */
    }
else *cry = 0;                                          /* else no carry */
if (cpu_unit.flags & IF_MII)                            /* Model 2? */
    res = sum_table[dst + src];                         /* "hardware" */
else res = M[ADD_TABLE + (dst * 10) + src];             /* table lookup */
if (res & FLAG)                                         /* carry out? */
    *cry = 1;
if (res & DIGIT)                                        /* nz? clr ind */
    ind[IN_EZ] = 0;
return res & DIGIT;
}

/* Multiply routine 

   Inputs:
        mpc     =       multiplicand address
        mpy     =       multiplier address
   Outputs:
        return  =       status

   Reference manual: "A zero product may have a negative or positive sign,
   depending on the signs of the fields at the P and Q addresses."
*/

t_stat mul_field (uint32 mpc, uint32 mpy)
{
int32 i;
uint32 pro;                                             /* prod pointer */
uint32 mpyd, mpyf;                                      /* mpy digit, flag */
uint32 cnt = 0;                                         /* counter */
uint8 sign;                                             /* final sign */
t_stat r;

PR1 = 1;                                                /* step on PR1 */
for (i = 0; i < PROD_AREA_LEN; i++)                     /* clr prod area */
    M[PROD_AREA + i] = 0;
sign = (M[mpc] & FLAG) ^ (M[mpy] & FLAG);               /* get final sign */
ind[IN_HP] = (sign == 0);                               /* set indicators */
ind[IN_EZ] = 1;
pro = PROD_AREA + PROD_AREA_LEN - 1;                    /* product ptr */

/* Loop on multiplier (mpy) and product (pro) digits */

do {
    mpyd = M[mpy] & DIGIT;                              /* multiplier digit */
    mpyf = (M[mpy] & FLAG) && (cnt != 0);               /* last digit flag */
    if (BAD_DIGIT (mpyd))                               /* bad? */
        return STOP_INVDIG;
    r = mul_one_digit (mpyd, mpc, pro, mpyf);           /* prod += mpc*mpy_dig */
    if (r != SCPE_OK)                                   /* error? */
        return r;
    MM (mpy);                                           /* decr mpyr, prod addrs */
    MM (pro);
    if (cnt++ >= MEMSIZE)                               /* (stop runaway) */
        return STOP_FWRAP;
    } while ((mpyf == 0) || (cnt <= 1));                /* until mpyr flag */

if (ind[IN_EZ])                                         /* res = 0? clr HP */
    ind[IN_HP] = 0;
M[PROD_AREA + PROD_AREA_LEN - 1] |= sign;               /* set final sign */
return SCPE_OK;
}

/* Multiply step

   Inputs:
        mpyd    =       multiplier digit (tested valid)
        mpcp    =       multiplicand low address
        prop    =       product low address
        last    =       last iteration flag (set flag on high product)
   Outputs:
        prod    +=      multiplicand * multiplier_digit
        return  =       status

   The multiply table address is constructed as follows:
   - double the multiplier digit
   - use the 10's digit of the doubled result, + 1, as the 100's digit
     of the table address
   - use the multiplicand digit as the 10's digit of the table address
   - use the unit digit of the doubled result as the unit digit of the
     table address
   EZ indicator is cleared if a non-zero digit is ever generated
*/

t_stat mul_one_digit (uint32 mpyd, uint32 mpcp, uint32 prop, uint32 last)
{
uint32 mpta, mptb;                                      /* mult table */
uint32 mptd;                                            /* mult table digit */
uint32 mpcd, mpcf;                                      /* mpc digit, flag */
uint32 prwp;                                            /* prod working ptr */
uint32 prod;                                            /* product digit */
uint32 cry;                                             /* carry */
uint32 mpcc, cryc;                                      /* counters */

mptb = MUL_TABLE + ((mpyd <= 4)? (mpyd * 2):            /* set mpy table 100's, */
    (((mpyd - 5) * 2) + 100));                          /* 1's digits */

/* Inner loop on multiplicand (mpcp) and product (prop) digits */

mpcc = 0;                                               /* multiplicand ctr */
do {
    prwp = prop;                                        /* product working ptr */
    mpcd = M[mpcp] & DIGIT;                             /* multiplicand digit */
    mpcf = M[mpcp] & FLAG;                              /* multiplicand flag */
    if (BAD_DIGIT (mpcd))                               /* bad? */
        return STOP_INVDIG;
    mpta = mptb + (mpcd * 10);                          /* mpy table 10's digit */
    cry = 0;                                            /* init carry */
    mptd = M[mpta] & DIGIT;                             /* mpy table digit */
    if (BAD_DIGIT (mptd))                               /* bad? */
        return STOP_INVDIG;
    prod = M[prwp] & DIGIT;                             /* product digit */
    if (BAD_DIGIT (prod))                               /* bad? */
        return STOP_INVDIG;
    M[prwp] = add_one_digit (prod, mptd, &cry);         /* add mpy tbl to prod */
    MM (prwp);                                          /* decr working ptr */
    mptd = M[mpta + 1] & DIGIT;                         /* mpy table digit */
    if (BAD_DIGIT (mptd))                               /* bad? */
        return STOP_INVDIG;
    prod = M[prwp] & DIGIT;                             /* product digit */
    if (BAD_DIGIT (prod))                               /* bad? */
        return STOP_INVDIG;
    M[prwp] = add_one_digit (prod, mptd, &cry);         /* add mpy tbl to prod */
    cryc = 0;                                           /* (stop runaway) */
    while (cry) {                                       /* propagate carry */
        MM (prwp);                                      /* decr working ptr */
        prod = M[prwp] & DIGIT;                         /* product digit */
        if (BAD_DIGIT (prod))                           /* bad? */
            return STOP_INVDIG;
        M[prwp] = add_one_digit (prod, 0, &cry);        /* add cry */
        if (cryc++ > MEMSIZE)
            return STOP_FWRAP;
        }
    MM (mpcp);                                          /* decr mpc, prod ptrs */
    MM (prop);
    if (mpcc++ > MEMSIZE)
        return STOP_FWRAP;
    } while ((mpcf == 0) || (mpcc <= 1));               /* until mpcf flag */
if (last)                                               /* flag high product */
    M[prop] = M[prop] | FLAG;
return SCPE_OK;
}

/* Divide routine - comments from Geoff Kuenning's 1620 simulator

   The destination of the divide is given by:

        100 - <# digits in quotient>

   Which is more easily calculated as:

        100 - <# digits in divisor> - <# digits in dividend>

   The quotient goes into 99 minus the divisor length.  The
   remainder goes into 99.  The load dividend instruction (above)
   should have specified a P address of 99 minus the size of the
   divisor.

   Note that this all implies that "dest" points to the *leftmost*
   digit of the dividend.

   After the division, the assumed decimal point will be as many
   positions to the left as there are digits in the divisor.  In
   other words, a 4-digit divisor will produce 4 (assumed) decimal
   places.

   There are other ways to do these things.  In particular, the
   load-dividend instruction doesn't have to specify the above
   formula; if it's done differently, then you don't have to get
   decimal places.  This is not well-explained in the books I have.

   How to divide on a 1620:

   The dividend is the field at 99:

            90 = _1234567890

   The divisor is somewhere else in memory:

            _03

   The divide operation specifies the left-most digit of the
   dividend as the place to begin trial subtractions:

            DM  90,3

   The loop works as follows:

        1.  Call the left-most digit of the dividend "current_dividend".
            Call the location current_dividend - <divisor_length>
            "quotient_digit".
        2.  Clear the flag at current_dividend, and set one at
            quotient_digit.

                88 = _001234567890, q_d = 88, c_d = 90
            [Not actually done; divisor length controls subtract.]
        3.  Subtract the divisor from the field at current-dividend,
            using normal 1620 rules, except that signs are ignored.
            Continue these subtractions until either 10 subtractions
            have been done, or you get a negative result:

                88 = _00_2234567890, q_d = 88, c_d = 90
        4.  If 10 subtractions have been done, set the overflow
            indicator and abort.  Otherwise, add the divisor back to
            correct for the oversubtraction:

                88 = _001234567890, q_d = 88, c_d = 90
        5.  Store the (net) number of subtractions in quotient_digit:

                88 = _001234567890, q_d = 88, c_d = 90
        6.  If this is not the first pass, clear the flag at
            quotient_digit.  Increment quotient_digit and
            current_dividend, and set a flag at the new
            quotient_digit:

                88 = _0_01234567890, q_d = 89, c_d = 91
            [If first pass, set a flag at quotient digit.]
        7.  If current_dividend is not 100, repeat steps 3 through 7.
        8.  Set flags at 99 and quotient_digit - 1 according to the
            rules of algebra:  the quotient's sign is the exclusive-or
            of the signs of the divisor and dividend, and the
            remainder has the sign of the dividend:

                 10 /  3 =  3 remainder  1
                 10 / -3 = -3 remainder  1
                -10 /  3 = -3 remainder -1
                -10 / -3 =  3 remainder -1
  
            This preserves the relationship dd = q * dv + r.

   Our example continues as follows for steps 3 through 7:
  
            3.  88 = _0_00_334567890, q_d = 89, c_d = 91
            4.  88 = _0_00034567890
            5.  88 = _0_40034567890
            6.  88 = _04_0034567890, q_d = 90, c_d = 92
            3.  88 = _04_00_34567890
            4.  88 = _04_0004567890
            5.  88 = _04_1004567890
            6.  88 = _041_004567890, q_d = 91, c_d = 93
            3.  88 = _041_00_2567890
            4.  88 = _041_001567890
            5.  88 = _041_101567890
            6.  88 = _0411_01567890, q_d = 92, c_d = 94
            3.  88 = _0411_00_367890
            4.  88 = _0411_00067890
            5.  88 = _0411_50067890
            6.  88 = _04115_0067890, q_d = 93, c_d = 95
            3.  88 = _04115_00_37890
            4.  88 = _04115_0007890
            5.  88 = _04115_2007890
            6.  88 = _041152_007890, q_d = 94, c_d = 96
            3.  88 = _041152_00_2890
            4.  88 = _041152_001890
            5.  88 = _041152_201890
            6.  88 = _0411522_01890, q_d = 95, c_d = 97
            3.  88 = _0411522_00_390
            4.  88 = _0411522_00090
            5.  88 = _0411522_60090
            6.  88 = _04115226_0090, q_d = 96, c_d = 98
            3.  88 = _04115226_00_30
            4.  88 = _04115226_0000
            5.  88 = _04115226_3000
            6.  88 = _041152263_000, q_d = 97, c_d = 99
            3.  88 = _041152263_00_3
            4.  88 = _041152263_000
            5.  88 = _041152263_000
            6.  88 = _0411522630_00, q_d = 98, c_d = 100

   In the actual code below, we elide several of these steps in
   various ways for convenience and efficiency.

   Note that the EZ indicator is NOT valid for divide, because it
   is cleared by any non-zero result in an intermediate add.  The
   code maintains its own EZ indicator for the quotient.
*/

t_stat div_field (uint32 dvd, uint32 dvr, int32 *ez)
{
uint32 quop, quod, quos;                                /* quo ptr, dig, sign */
uint32 dvds;                                            /* dvd sign */
t_bool first = TRUE;                                    /* first pass */
t_stat r;

dvds = (M[PROD_AREA + PROD_AREA_LEN - 1]) & FLAG;       /* dividend sign */
quos = dvds ^ (M[dvr] & FLAG);                          /* quotient sign */
ind[IN_HP] = (quos == 0);                               /* set indicators */
*ez = 1;

/* Loop on current dividend, high order digit at dvd */

do {
    r = div_one_digit (dvd, dvr, 10, &quod, &quop);     /* dev quo digit */
    if (r != SCPE_OK)                                   /* error? */
        return r;

/* Store quotient digit and advance current dividend pointer */

    if (first) {                                        /* first pass? */
        if (quod >= 10) {                               /* overflow? */
            ind[IN_OVF] = 1;                            /* set indicator */
            return STOP_OVERFL;                         /* stop */
            }
        M[quop] = FLAG | quod;                          /* set flag on quo */
        first = FALSE;
        }
    else M[quop] = quod;                                /* store quo digit */
    if (quod)                                           /* if nz, clr ind */
        *ez = 0;
    PP (dvd);                                           /* incr dvd ptr */
    } while (dvd != (PROD_AREA + PROD_AREA_LEN));       /* until end prod */

/* Division done.  Set signs of quo, rem, set flag on high order remainder */

if (*ez)                                                /* res = 0? clr HP */
    ind[IN_HP] = 0;
M[PROD_AREA + PROD_AREA_LEN - 1] |= dvds;               /* remainder sign */
M[quop] = M[quop] | quos;                               /* quotient sign */
PP (quop);                                              /* high remainder */
M[quop] = M[quop] | FLAG;                               /* set flag */
return SCPE_OK;
}

/* Divide step

   Inputs:
        dvd     =       current dividend address (high digit)
        dvr     =       divisor address (low digit)
        max     =       max number of iterations before overflow
        &quod   =       address to store quotient digit
        &quop   =       address to store quotient pointer (can be NULL)
   Outputs:
        return  =       status

   Divide step calculates a quotient digit by repeatedly subtracting the
   divisor from the current dividend.  The divisor's length controls the
   subtraction; dividend flags are ignored.
*/

t_stat div_one_digit (uint32 dvd, uint32 dvr, uint32 max,
                 uint32 *quod, uint32 *quop)
{
uint32 dvrp, dvrd, dvrf;                                /* dvr ptr, dig, flag */
uint32 dvdp, dvdd;                                      /* dvd ptr, dig */
uint32 qd, cry;                                         /* quo dig, carry */
uint32 cnt;

for (qd = 0; qd < max; qd++) {                          /* devel quo dig */
    dvrp = dvr;                                         /* divisor ptr */
    dvdp = dvd;                                         /* dividend ptr */
    cnt = 0;
    cry = 1;                                            /* carry in = 1 */
    do {                                                /* sub dvr fm dvd */
        dvdd = M[dvdp] & DIGIT;                         /* dividend digit */
        if (BAD_DIGIT (dvdd))                           /* bad? */
            return STOP_INVDIG;
        dvrd = M[dvrp] & DIGIT;                         /* divisor digit */
        dvrf = M[dvrp] & FLAG;                          /* divisor flag */
        if (BAD_DIGIT (dvrd))                           /* bad? */
            return STOP_INVDIG;
        M[dvdp] = add_one_digit (dvdd, 9 - dvrd, &cry); /* sub */
        MM (dvdp);                                      /* decr ptrs */
        MM (dvrp);
        if (cnt++ >= MEMSIZE)                           /* (stop runaway) */
            return STOP_FWRAP;
        } while ((dvrf == 0) || (cnt <= 1));            /* until dvr flag */
    if (!cry) {                                         /* !cry = borrow */
        dvdd = M[dvdp] & DIGIT;                         /* borrow digit */
        if (BAD_DIGIT (dvdd))                           /* bad? */
            return STOP_INVDIG;
        M[dvdp] = add_one_digit (dvdd, 9, &cry);        /* sub */
        }
    if (!cry)                                           /* !cry = negative */
        break;
    }

/* Add back the divisor to correct for the negative result */

dvrp = dvr;                                             /* divisor ptr */
dvdp = dvd;                                             /* dividend ptr */
cnt = 0;
cry = 0;                                                /* carry in = 0 */
do {
    dvdd = M[dvdp] & DIGIT;                             /* dividend digit */
    dvrd = M[dvrp] & DIGIT;                             /* divisor digit */
    dvrf = M[dvrp] & FLAG;                              /* divisor flag */
    M[dvdp] = add_one_digit (dvdd, dvrd, &cry);         /* add */
    MM (dvdp);                                          /* decr ptrs */
    MM (dvrp);
    cnt++;
    } while ((dvrf == 0) || (cnt <= 1));                /* until dvr flag */
if (cry) {                                              /* carry out? */
    dvdd = M[dvdp] & DIGIT;                             /* borrow digit */
    M[dvdp] = add_one_digit (dvdd, 0, &cry);            /* add */
    }
if (quop != NULL)                                       /* set quo addr */
    *quop = dvdp;
*quod = qd;                                             /* set quo digit */
return SCPE_OK;
}

/* Logical operation routines (and, or, xor, complement)

   Inputs:
        d       =       destination address
        s       =       source address
   Output:
        return  =       status

   Destination flags are preserved; EZ reflects the result.
   COM does not obey normal field length restrictions.
*/

t_stat or_field (uint32 d, uint32 s)
{
uint32 cnt = 0;
int32 t;

ind[IN_EZ] = 1;                                         /* assume result zero */
do {
    t = M[s];                                           /* get src */
    M[d] = (M[d] & FLAG) | ((M[d] | t) & 07);           /* OR src to dst */
    if (M[d] & DIGIT)                                   /* nz dig? clr ind */
        ind[IN_EZ] = 0;
    MM (d);                                             /* decr pointers */
    MM (s);
    if (cnt++ >= MEMSIZE)                               /* (stop runaway) */
        return STOP_FWRAP;
    } while (((t & FLAG) == 0) || (cnt <= 1));          /* until src flag */
return SCPE_OK;
}

t_stat and_field (uint32 d, uint32 s)
{
uint32 cnt = 0;
int32 t;

ind[IN_EZ] = 1;                                         /* assume result zero */
do {
    t = M[s];                                           /* get src */
    M[d] = (M[d] & FLAG) | ((M[d] & t) & 07);           /* AND src to dst */
    if (M[d] & DIGIT)                                   /* nz dig? clr ind */
        ind[IN_EZ] = 0;
    MM (d);                                             /* decr pointers */
    MM (s);
    if (cnt++ >= MEMSIZE)                               /* (stop runaway) */
        return STOP_FWRAP;
    } while (((t & FLAG) == 0) || (cnt <= 1));          /* until src flag */
return SCPE_OK;
}

t_stat xor_field (uint32 d, uint32 s)
{
uint32 cnt = 0;
int32 t;

ind[IN_EZ] = 1;                                         /* assume result zero */
do {
    t = M[s];                                           /* get src */
    M[d] = (M[d] & FLAG) | ((M[d] ^ t) & 07);           /* XOR src to dst */
    if (M[d] & DIGIT)                                   /* nz dig? clr ind */
        ind[IN_EZ] = 0;
    MM (d);                                             /* decr pointers */
    MM (s);
    if (cnt++ >= MEMSIZE)                               /* (stop runaway) */
        return STOP_FWRAP;
    } while (((t & FLAG) == 0) || (cnt <= 1));          /* until src flag */
return SCPE_OK;
}

t_stat com_field (uint32 d, uint32 s)
{
uint32 cnt = 0;
int32 t;

ind[IN_EZ] = 1;                                         /* assume result zero */
do {
    t = M[s];                                           /* get src */
    M[d] = (t & FLAG) | ((t ^ 07) & 07);                /* comp src to dst */
    if (M[d] & DIGIT)                                   /* nz dig? clr ind */
        ind[IN_EZ] = 0;
    MM (d);                                             /* decr pointers */
    MM (s);
    if (cnt++ >= MEMSIZE)                               /* (stop runaway) */
        return STOP_FWRAP;
    } while ((t & FLAG) == 0);                          /* until src flag */
return SCPE_OK;
}

/* Octal to decimal

   Inputs:
        tbl     =       conversion table address (low digit)
        s       =       source address
   Outputs:
        product area =  converted source
        result  =       status

   OTD is a cousin of multiply.  The octal digits in the source are
   multiplied by successive values in the conversion table, and the
   results are accumulated in the product area.  Although the manual
   does not say, this code assumes that EZ and HP are affected.
 */

t_stat oct_to_dec (uint32 tbl, uint32 s)
{
uint32 cnt = 0, tblc;
uint32 i, sd, sf, tf, sign;
t_stat r;

for (i = 0; i < PROD_AREA_LEN; i++)                     /* clr prod area */
    M[PROD_AREA + i] = 0;
sign = M[s] & FLAG;                                     /* save sign */
ind[IN_EZ] = 1;                                         /* set indicators */
ind[IN_HP] = (sign == 0);
do {
    sd = M[s] & DIGIT;                                  /* src digit */
    sf = M[s] & FLAG;                                   /* src flag */
    r = mul_one_digit (sd, tbl, PROD_AREA + PROD_AREA_LEN - 1, sf);
    if (r != SCPE_OK)                                   /* err? */
        return r;
    MM (s);                                             /* decr src addr */
    MM (tbl);                                           /* skip 1st tbl dig */
    tblc = 0;                                           /* count */
    do {
        tf = M[tbl] & FLAG;                             /* get next */
        MM (tbl);                                       /* decr ptr */
        if (tblc++ > MEMSIZE)
            return STOP_FWRAP;
        } while (tf == 0);                              /* until flag */
    if (cnt++ >= MEMSIZE)                               /* (stop runaway) */
        return STOP_FWRAP;
    } while (sf == 0);
if (ind[IN_EZ])                                         /* res = 0? clr HP */
    ind[IN_HP] = 0;
M[PROD_AREA + PROD_AREA_LEN - 1] |= sign;               /* set sign */
return SCPE_OK;
}

/* Decimal to octal 

   Inputs:
        d       =       destination address
        tbl     =       conversion table address (low digit of highest power)
        &ez     =       address of soft EZ indicator
        product area =  field to convert
   Outputs:
        return  =       status

   DTO is a cousin to divide.  The number in the product area is repeatedly
   divided by successive values in the conversion table, and the quotient
   digits are stored in the destination.  Although the manual does not say,
   this code assumes that EZ and HP are affected.
 */

t_stat dec_to_oct (uint32 d, uint32 tbl, int32 *ez)
{
uint32 sign, octd, t;
t_bool first = TRUE;
uint32 ctr = 0;
t_stat r;

sign = M[PROD_AREA + PROD_AREA_LEN - 1] & FLAG;         /* input sign */
*ez = 1;                                                /* set indicators */
ind[IN_HP] = (sign == 0);
for ( ;; ) {
    r = div_one_digit (PROD_AREA + PROD_AREA_LEN - 1,   /* divide */
        tbl, 8, &octd, NULL);
    if (r != SCPE_OK)                                   /* error? */
        return r;
    if (first) {                                        /* first pass? */
        if (octd >= 8) {                                /* overflow? */
            ind[IN_OVF] = 1;                            /* set indicator */
            return SCPE_OK;                             /* stop */
            }
        M[d] = FLAG | octd;                             /* set flag on quo */
        first = FALSE;
        }
    else M[d] = octd;                                   /* store quo digit */
    if (octd)                                           /* if nz, clr ind */
        *ez = 0;
    PP (tbl);                                           /* incr tbl addr */
    if ((M[tbl] & REC_MARK) == REC_MARK)                /* record mark? */
        break;
    PP (tbl);                                           /* skip flag */
    if ((M[tbl] & REC_MARK) == REC_MARK)                /* record mark? */
        break;
    do {                                                /* look for F, rec mk */
        PP (tbl);
        t = M[tbl];
        } while (((t & FLAG) == 0) && ((t & REC_MARK) != REC_MARK));
    MM (tbl);                                           /* step back one */
    PP (d);                                             /* incr quo addr */
    if (ctr++ > MEMSIZE)                                /* (stop runaway) */
        return STOP_FWRAP;
    }
if (*ez)                                                /* res = 0? clr HP */
    ind[IN_HP] = 0;
M[d] = M[d] | sign;                                     /* set result sign */   
return SCPE_OK;
}

/* Reset routine */

t_stat cpu_reset (DEVICE *dptr)
{
int32 i;
static t_bool one_time = TRUE;

PR1 = IR2 = 1;                                          /* invalidate PR1,IR2 */
ind[0] = 0;
for (i = IN_SW4 + 1; i < NUM_IND; i++)                  /* init indicators */
    ind[i] = 0;
if (cpu_unit.flags & IF_IA)                             /* indirect enabled? */
    iae = 1;
else iae = 0;
idxe = idxb = 0;                                        /* indexing off */
pcq_r = find_reg ("PCQ", NULL, dptr);                   /* init old PC queue */
if (pcq_r)
    pcq_r->qptr = 0;
else return SCPE_IERR;
sim_brk_types = sim_brk_dflt = SWMASK ('E');            /* init breakpoints */
upd_ind ();                                             /* update indicators */
if (one_time)                                           /* set default tables */
    cpu_set_table (&cpu_unit, 1, NULL, NULL);
one_time = FALSE;
return SCPE_OK;
}

/* Memory examine */

t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
    return SCPE_NXM;
if (vptr != NULL)
    *vptr = M[addr] & (FLAG | DIGIT);
return SCPE_OK;
}

/* Memory deposit */

t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
    return SCPE_NXM;
M[addr] = val & (FLAG | DIGIT);
return SCPE_OK;
}

/* Memory size change */

t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
uint32 i;

if ((val <= 0) || (val > MAXMEMSIZE) || ((val % 1000) != 0))
    return SCPE_ARG;
for (i = val; i < MEMSIZE; i++)
    mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
    return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++)
    M[i] = 0;
return SCPE_OK;
}

/* Model change */

t_stat cpu_set_model (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (val)
    cpu_unit.flags = (cpu_unit.flags & (UNIT_SCP | UNIT_BCD | MII_OPT)) |
        IF_DIV | IF_IA | IF_EDT;
else cpu_unit.flags = cpu_unit.flags & (UNIT_SCP | UNIT_BCD | MI_OPT);
return SCPE_OK;
}

/* Set/clear Model 1 option */

t_stat cpu_set_opt1 (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (cpu_unit.flags & IF_MII) {
    printf ("Feature is standard on 1620 Model 2\n");
    if (sim_log)
        fprintf (sim_log, "Feature is standard on 1620 Model 2\n");
    return SCPE_NOFNC;
    }
return SCPE_OK;
}

/* Set/clear Model 2 option */

t_stat cpu_set_opt2 (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (!(cpu_unit.flags & IF_MII)) {
    printf ("Feature is not available on 1620 Model 1\n");
    if (sim_log)
        fprintf (sim_log, "Feature is not available on 1620 Model 1\n");
    return SCPE_NOFNC;
    }
return SCPE_OK;
}

/* Front panel save */

t_stat cpu_set_save (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (saved_PC & 1)
    return SCPE_NOFNC;
PR1 = saved_PC;
return SCPE_OK;
}

/* Set standard add/multiply tables */

t_stat cpu_set_table (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 i;

for (i = 0; i < MUL_TABLE_LEN; i++)                     /* set mul table */
    M[MUL_TABLE + i] = std_mul_table[i];
if (((cpu_unit.flags & IF_MII) == 0) || val) {          /* set add table */
    for (i = 0; i < ADD_TABLE_LEN; i++)
        M[ADD_TABLE + i] = std_add_table[i];
    }
return SCPE_OK;
}

/* Set history */

t_stat cpu_set_hist (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 i, lnt;
t_stat r;

if (cptr == NULL) {
    for (i = 0; i < hst_lnt; i++)
        hst[i].vld = 0;
    hst_p = 0;
    return SCPE_OK;
    }
lnt = (int32) get_uint (cptr, 10, HIST_MAX, &r);
if ((r != SCPE_OK) || (lnt && (lnt < HIST_MIN)))
    return SCPE_ARG;
hst_p = 0;
if (hst_lnt) {
    free (hst);
    hst_lnt = 0;
    hst = NULL;
    }
if (lnt) {
    hst = (InstHistory *) calloc (lnt, sizeof (InstHistory));
    if (hst == NULL)
        return SCPE_MEM;
    hst_lnt = lnt;
    }
return SCPE_OK;
}

/* Show history */

t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, void *desc)
{
int32 i, k, di, lnt;
char *cptr = (char *) desc;
t_value sim_eval[INST_LEN];
t_stat r;
InstHistory *h;
extern t_stat fprint_sym (FILE *ofile, t_addr addr, t_value *val,
    UNIT *uptr, int32 sw);

if (hst_lnt == 0)                                       /* enabled? */
    return SCPE_NOFNC;
if (cptr) {
    lnt = (int32) get_uint (cptr, 10, hst_lnt, &r);
    if ((r != SCPE_OK) || (lnt == 0))
        return SCPE_ARG;
    }
else lnt = hst_lnt;
di = hst_p - lnt;                                       /* work forward */
if (di < 0)
    di = di + hst_lnt;
fprintf (st, "PC     IR\n\n");
for (k = 0; k < lnt; k++) {                             /* print specified */
    h = &hst[(++di) % hst_lnt];                         /* entry pointer */
    if (h->vld) {                                       /* instruction? */
        fprintf (st, "%05d  ", h->pc);
        for (i = 0; i < INST_LEN; i++)
            sim_eval[i] = h->inst[i];
        if ((fprint_sym (st, h->pc, sim_eval, &cpu_unit, SWMASK ('M'))) > 0) {
            fprintf (st, "(undefined)");
            for (i = 0; i < INST_LEN; i++)
                fprintf (st, "%02X", h->inst[i]);
            }
        fputc ('\n', st);                               /* end line */
        }                                               /* end else instruction */
    }                                                   /* end for */
return SCPE_OK;
}