1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
|
/* nova_cpu.c: NOVA CPU simulator
Copyright (c) 1993-2008, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
cpu Nova central processor
04-Jul-07 BKR DEV_SET/CLR macros now used,
support for non-existant devices added
CPU bootstrap code warning: high-speed devices may not boot properly,
execution history facility added,
documented Nova 3 secret LDB/STB/SAVN behavior,
added support for secret Nova 3 LDB/STB/SAVN substitute actions,
'ind_max' changed from 16 to 65536 for better unmapped system compatibility,
INT_TRAP added for Nova 3, 4 trap instruction handling,
28-Apr-07 RMS Removed clock initialization
06-Feb-06 RMS Fixed bug in DIVS (found by Mark Hittinger)
22-Sep-05 RMS Fixed declarations (from Sterling Garwood)
25-Aug-05 RMS Fixed DIVS case 2^31 / - 1
14-Jan-04 RMS Fixed device enable/disable support (found by Bruce Ray)
19-Jan-03 RMS Changed CMASK to CDMASK for Apple Dev Kit conflict
03-Oct-02 RMS Added DIB infrastructure
30-Dec-01 RMS Added old PC queue
07-Dec-01 RMS Revised to use breakpoint package
30-Nov-01 RMS Added extended SET/SHOW support
10-Aug-01 RMS Removed register in declarations
17-Jul-01 RMS Moved function prototype
26-Apr-01 RMS Added device enable/disable support
05-Mar-01 RMS Added clock calibration
22-Dec-00 RMS Added Bruce Ray's second terminal
15-Dec-00 RMS Added Charles Owen's CPU bootstrap
08-Dec-00 RMS Changes from Bruce Ray
-- fixed trap test to include Nova 3
-- fixed DIV and DIVS divide by 0
-- fixed RETN to set SP from FP
-- fixed IORST to preserve carry
-- added "secret" Nova 4 PSHN/SAVEN instructions
-- added plotter support
15-Oct-00 RMS Fixed bug in MDV test, added stack, byte, trap instructions
14-Apr-98 RMS Changed t_addr to unsigned
15-Sep-97 RMS Added read and write breakpoints
The register state for the NOVA CPU is:
AC[0:3]<0:15> general registers
C carry flag
PC<0:14> program counter
The NOVA has three instruction formats: memory reference, I/O transfer,
and operate. The memory reference format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0| op | AC |in| mode| displacement | memory reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
<0:4> mnemonic action
00000 JMP PC = MA
00001 JMS AC3 = PC, PC = MA
00010 ISZ M[MA] = M[MA] + 1, skip if M[MA] == 0
00011 DSZ M[MA] = M[MA] - 1, skip if M[MA] == 0
001'n LDA ACn = M[MA]
010'n STA M[MA] = ACn
<5:7> mode action
000 page zero direct MA = zext (IR<8:15>)
001 PC relative direct MA = PC + sext (IR<8:15>)
010 AC2 relative direct MA = AC2 + sext (IR<8:15>)
011 AC3 relative direct MA = AC3 + sext (IR<8:15>)
100 page zero indirect MA = M[zext (IR<8:15>)]
101 PC relative indirect MA = M[PC + sext (IR<8:15>)]
110 AC2 relative indirect MA = M[AC2 + sext (IR<8:15>)]
111 AC3 relative indirect MA = M[AC3 + sext (IR<8:15>)]
Memory reference instructions can access an address space of 32K words.
An instruction can directly reference the first 256 words of memory
(called page zero), as well as 256 words relative to the PC, AC2, or
AC3; it can indirectly access all 32K words. If an indirect address
is in locations 00020-00027, the indirect address is incremented and
rewritten to memory before use; if in 00030-00037, decremented and
rewritten.
The I/O transfer format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0 1 1| AC | opcode |pulse| device | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The IOT instruction sends the opcode, pulse, and specified AC to the
specified I/O device. The device may accept data, provide data,
initiate or cancel operations, or skip on status.
The operate format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1|srcAC|dstAC| opcode |shift|carry|nl| skip | operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
\______/ \___/ \___/ | | | |
| | | | | | +--- reverse skip sense
| | | | | +--- skip if C == 0
| | | | +--- skip if result == 0
| | | +--- don't load result
| | +--- carry in (load as is,
| | set to Zero,
| | set to One,
| | load Complement)
| +--- shift (none,
| left one,
| right one,
| byte swap)
+--- operation (complement,
negate,
move,
increment,
add complement,
subtract,
add,
and)
The operate instruction can be microprogrammed to perform operations
on the source and destination AC's and the Carry flag.
Some notes from Bruce Ray:
1. DG uses the value of the autoindex location -before- the
modification to determine if additional indirect address
levels are to be performed. Most DG emulators conform to
this standard, but some vendor machines (i.e. Point 4 Mark 8)
do not.
2. Infinite indirect references may occur on unmapped systems
and can "hang" the hardware. Some DG diagnostics perform
10,000s of references during a single instruction.
3. Nova 3 adds the following instructions to the standard Nova
instruction set:
trap instructions
stack push/pop instructions
save/return instructions
stack register manipulation instructions
unsigned MUL/DIV
4. Nova 4 adds the following instructions to the Nova 3 instruction
set:
signed MUL/DIV
load/store byte
secret (undocumented) stack instructions [PSHN, SAVN]
5. Nova, Nova 3 and Nova 4 unsigned mul/div instructions are the
same instruction code values on all machines.
6. Undocumented Nova 3 behaviour for LDB, STB and SAVN has been
added to appropriate code.
7. Most 3rd party vendors had a user-controlled method to increase the
logical address space from 32 KW to 64 KW. This capability came at
the expense of disabling multi-level indirect addressing when the 64KW
mode is in effect, and keeping DG multi-level indirect compatibility
when 64KW mode is inactive. The most common implementation was to use
an "NIOP <ac>,CPU" instruction to control whether 32 KW or 64 KW
addressing mode was wanted, and <ac> bit 15 (the least-significant bit
of an accumulator) determined which mode was set:
0 = 32 KW (DG compatible), 1 = 64 KW.
This feature has been implemented in our Nova emulation for all to enjoy.
This routine is the instruction decode routine for the NOVA.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
breakpoint encountered
infinite indirection loop
unknown I/O device and STOP_DEV flag set
I/O error in I/O simulator
2. Interrupts. Interrupts are maintained by four parallel variables:
dev_done device done flags
dev_disable device interrupt disable flags
dev_busy device busy flags
int_req interrupt requests
In addition, int_req contains the interrupt enable and ION pending
flags. If ION and ION pending are set, and at least one interrupt
request is pending, then an interrupt occurs. Note that the 16b PIO
mask must be mapped to the simulator's device bit mapping.
3. Non-existent memory. On the NOVA, reads to non-existent memory
return zero, and writes are ignored. In the simulator, the
largest possible memory is instantiated and initialized to zero.
Thus, only writes need be checked against actual memory size.
4. Adding I/O devices. These modules must be modified:
nova_defs.h add interrupt request definition
nova_sys.c add sim_devices entry
*/
#include "nova_defs.h"
#define PCQ_SIZE 64 /* must be 2**n */
#define PCQ_MASK (PCQ_SIZE - 1)
#define PCQ_ENTRY pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = PC
#define INCA(x) (((x) + 1) & AMASK)
#define DECA(x) (((x) - 1) & AMASK)
#define SEXT(x) (((x) & SIGN)? ((x) | ~DMASK): (x))
#define STK_CHECK(x,y) if (((x) & 0377) < (y)) \
int_req = int_req | INT_STK
#define IND_STEP(x) M[x] & A_IND; /* return next level indicator */ \
if ( ((x) <= AUTO_TOP) && ((x) >= AUTO_INC) ) \
if ( (x) < AUTO_DEC ) \
M[x] = (M[x] + 1) & DMASK; \
else \
M[x] = (M[x] - 1) & DMASK; \
x = M[x] & AMASK
#define INCREMENT_PC PC = (PC + 1) & AMASK /* increment PC */
#define UNIT_V_MDV (UNIT_V_UF + 0) /* MDV present */
#define UNIT_V_STK (UNIT_V_UF + 1) /* stack instr */
#define UNIT_V_BYT (UNIT_V_UF + 2) /* byte instr */
#define UNIT_V_64KW (UNIT_V_UF + 3) /* 64KW mem support */
#define UNIT_V_MSIZE (UNIT_V_UF + 4) /* dummy mask */
#define UNIT_MDV (1 << UNIT_V_MDV)
#define UNIT_STK (1 << UNIT_V_STK)
#define UNIT_BYT (1 << UNIT_V_BYT)
#define UNIT_64KW (1 << UNIT_V_64KW)
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
#define UNIT_IOPT (UNIT_MDV | UNIT_STK | UNIT_BYT | UNIT_64KW)
#define UNIT_NOVA3 (UNIT_MDV | UNIT_STK)
#define UNIT_NOVA4 (UNIT_MDV | UNIT_STK | UNIT_BYT)
#define UNIT_KERONIX (UNIT_MDV | UNIT_64KW)
#define MODE_64K (cpu_unit.flags & UNIT_64KW)
#define MODE_64K_ACTIVE ((cpu_unit.flags & UNIT_64KW) && (0xFFFF == AMASK))
typedef struct
{
int32 pc;
int16 ir;
int16 ac0 ;
int16 ac1 ;
int16 ac2 ;
int16 ac3 ;
int16 carry ;
int16 sp ;
int16 fp ;
int32 devDone ;
int32 devBusy ;
int32 devDisable ;
int32 devIntr ;
} Hist_entry ;
uint16 M[MAXMEMSIZE] = { 0 }; /* memory */
int32 AC[4] = { 0 }; /* accumulators */
int32 C = 0; /* carry flag */
int32 saved_PC = 0; /* program counter */
int32 SP = 0; /* stack pointer */
int32 FP = 0; /* frame pointer */
int32 SR = 0; /* switch register */
int32 dev_done = 0; /* device done flags */
int32 dev_busy = 0; /* device busy flags */
int32 dev_disable = 0; /* int disable flags */
int32 int_req = 0; /* interrupt requests */
int32 pimask = 0; /* priority int mask */
int32 pwr_low = 0; /* power fail flag */
int32 ind_max = 65536; /* iadr nest limit */
int32 stop_dev = 0; /* stop on ill dev */
uint16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
int32 pcq_p = 0; /* PC queue ptr */
REG *pcq_r = NULL; /* PC queue reg ptr */
struct ndev dev_table[64]; /* dispatch table */
int32 AMASK = 077777 ; /* current memory address mask */
/* (default to 32KW) */
static int32 hist_p = 0 ; /* history pointer */
static int32 hist_cnt = 0 ; /* history count */
static Hist_entry * hist = NULL ; /* instruction history */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_boot (int32 unitno, DEVICE *dptr);
t_stat build_devtab (void);
t_stat hist_set( UNIT * uptr, int32 val, char * cptr, void * desc ) ;
t_stat hist_show( FILE * st, UNIT * uptr, int32 val, void * desc ) ;
static int hist_save( int32 pc, int32 our_ir ) ;
char * devBitNames( int32 flags, char * ptr, char * sepStr ) ;
void mask_out (int32 mask);
extern int32 sim_interval;
extern int32 sim_int_char;
extern uint32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
extern DEVICE * sim_devices[];
extern t_stat fprint_sym(FILE *ofile, t_addr addr, t_value *val, UNIT *uptr, int32 sw);
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = {
UDATA (NULL, UNIT_FIX+UNIT_BINK+UNIT_MDV, DFTMEMSIZE /* MAXMEMSIZE */ )
};
REG cpu_reg[] = {
{ ORDATA (PC, saved_PC, 15) },
{ ORDATA (AC0, AC[0], 16) },
{ ORDATA (AC1, AC[1], 16) },
{ ORDATA (AC2, AC[2], 16) },
{ ORDATA (AC3, AC[3], 16) },
{ FLDATA (C, C, 16) },
{ ORDATA (SP, SP, 16) },
{ ORDATA (FP, FP, 16) },
{ ORDATA (SR, SR, 16) },
{ ORDATA (PI, pimask, 16) },
{ FLDATA (ION, int_req, INT_V_ION) },
{ FLDATA (ION_DELAY, int_req, INT_V_NO_ION_PENDING) },
{ FLDATA (STKOVF, int_req, INT_V_STK) },
{ FLDATA (PWR, pwr_low, 0) },
{ ORDATA (INT, int_req, INT_V_ION+1), REG_RO },
{ ORDATA (BUSY, dev_busy, INT_V_ION+1), REG_RO },
{ ORDATA (DONE, dev_done, INT_V_ION+1), REG_RO },
{ ORDATA (DISABLE, dev_disable, INT_V_ION+1), REG_RO },
{ FLDATA (STOP_DEV, stop_dev, 0) },
{ DRDATA (INDMAX, ind_max, 32), REG_NZ + PV_LEFT },
{ ORDATA (AMASK, AMASK, 16) },
{ DRDATA (MEMSIZE, cpu_unit.capac, 32), REG_NZ + PV_LEFT },
{ BRDATA (PCQ, pcq, 8, 16, PCQ_SIZE), REG_RO+REG_CIRC },
{ ORDATA (PCQP, pcq_p, 6), REG_HRO },
{ ORDATA (WRU, sim_int_char, 8) },
{ NULL }
};
MTAB cpu_mod[] = {
{ UNIT_IOPT, UNIT_NOVA3, "NOVA3", "NOVA3", NULL },
{ UNIT_IOPT, UNIT_NOVA4, "NOVA4", "NOVA4", NULL },
{ UNIT_IOPT, UNIT_KERONIX, "KERONIX", "KERONIX", NULL },
{ UNIT_IOPT, UNIT_MDV, "MDV", "MDV", NULL },
{ UNIT_IOPT, UNIT_64KW, "EXT64KW", "EXT64KW", NULL },
{ UNIT_IOPT, 0, "none", "NONE", NULL },
{ UNIT_MSIZE, ( 4 * 1024), NULL, "4K", &cpu_set_size },
{ UNIT_MSIZE, ( 8 * 1024), NULL, "8K", &cpu_set_size },
{ UNIT_MSIZE, (12 * 1024), NULL, "12K", &cpu_set_size },
{ UNIT_MSIZE, (16 * 1024), NULL, "16K", &cpu_set_size },
{ UNIT_MSIZE, (20 * 1024), NULL, "20K", &cpu_set_size },
{ UNIT_MSIZE, (24 * 1024), NULL, "24K", &cpu_set_size },
{ UNIT_MSIZE, (28 * 1024), NULL, "28K", &cpu_set_size },
{ UNIT_MSIZE, (32 * 1024), NULL, "32K", &cpu_set_size },
{ UNIT_MSIZE, (36 * 1024), NULL, "36K", &cpu_set_size },
{ UNIT_MSIZE, (40 * 1024), NULL, "40K", &cpu_set_size },
{ UNIT_MSIZE, (44 * 1024), NULL, "44K", &cpu_set_size },
{ UNIT_MSIZE, (48 * 1024), NULL, "48K", &cpu_set_size },
{ UNIT_MSIZE, (52 * 1024), NULL, "52K", &cpu_set_size },
{ UNIT_MSIZE, (56 * 1024), NULL, "56K", &cpu_set_size },
{ UNIT_MSIZE, (60 * 1024), NULL, "60K", &cpu_set_size },
{ UNIT_MSIZE, (64 * 1024), NULL, "64K", &cpu_set_size },
{ MTAB_XTD|MTAB_VDV|MTAB_NMO|MTAB_SHP, 0, "HISTORY", "HISTORY",
&hist_set, &hist_show },
{ 0 }
};
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 8, 16 /* = 64 KW, 15 = 32KW */, 1, 8, 16,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL
};
t_stat sim_instr (void)
{
int32 PC, IR, i;
t_stat reason;
/* Restore register state */
if (build_devtab () != SCPE_OK) /* build dispatch */
return SCPE_IERR;
PC = saved_PC & AMASK; /* load local PC */
C = C & CBIT;
mask_out (pimask); /* reset int system */
reason = 0;
/* Main instruction fetch/decode loop */
while (reason == 0) { /* loop until halted */
if (sim_interval <= 0) { /* check clock queue */
if ( (reason = sim_process_event ()) )
break;
}
if (int_req > INT_PENDING) { /* interrupt or exception? */
int32 MA, indf;
if (int_req & INT_TRAP) { /* trap instruction? */
int_req = int_req & ~INT_TRAP ; /* clear */
PCQ_ENTRY; /* save old PC */
M[TRP_SAV] = (PC - 1) & AMASK;
MA = TRP_JMP; /* jmp @47 */
}
else {
int_req = int_req & ~INT_ION; /* intr off */
PCQ_ENTRY; /* save old PC */
M[INT_SAV] = PC;
if (int_req & INT_STK) { /* stack overflow? */
int_req = int_req & ~INT_STK; /* clear */
MA = STK_JMP; /* jmp @3 */
}
else
MA = INT_JMP; /* intr: jmp @1 */
}
if ( MODE_64K_ACTIVE ) {
indf = IND_STEP (MA);
}
else
{
for (i = 0, indf = 1; indf && (i < ind_max); i++) {
indf = IND_STEP (MA); /* indirect loop */
}
if (i >= ind_max) {
reason = STOP_IND_INT;
break;
}
}
PC = MA;
} /* end interrupt */
if (sim_brk_summ && sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
reason = STOP_IBKPT; /* stop simulation */
break;
}
IR = M[PC]; /* fetch instr */
if ( hist_cnt )
{
hist_save( PC, IR ) ; /* PC, int_req unchanged */
}
INCREMENT_PC ;
int_req = int_req | INT_NO_ION_PENDING; /* clear ION delay */
sim_interval = sim_interval - 1;
/* Operate instruction */
if (IR & I_OPR) { /* operate? */
int32 src, srcAC, dstAC;
srcAC = I_GETSRC (IR); /* get reg decodes */
dstAC = I_GETDST (IR);
switch (I_GETCRY (IR)) { /* decode carry */
case 0: /* load */
src = AC[srcAC] | C;
break;
case 1: /* clear */
src = AC[srcAC];
break;
case 2: /* set */
src = AC[srcAC] | CBIT;
break;
case 3: /* complement */
src = AC[srcAC] | (C ^ CBIT);
break;
} /* end switch carry */
switch (I_GETALU (IR)) { /* decode ALU */
case 0: /* COM */
src = src ^ DMASK;
break;
case 1: /* NEG */
src = ((src ^ DMASK) + 1) & CDMASK;
break;
case 2: /* MOV */
break;
case 3: /* INC */
src = (src + 1) & CDMASK;
break;
case 4: /* ADC */
src = ((src ^ DMASK) + AC[dstAC]) & CDMASK;
break;
case 5: /* SUB */
src = ((src ^ DMASK) + AC[dstAC] + 1) & CDMASK;
break;
case 6: /* ADD */
src = (src + AC[dstAC]) & CDMASK;
break;
case 7: /* AND */
src = src & (AC[dstAC] | CBIT);
break;
} /* end switch oper */
switch (I_GETSHF (IR)) { /* decode shift */
case 0: /* nop */
break;
case 1: /* L */
src = ((src << 1) | (src >> 16)) & CDMASK;
break;
case 2: /* R */
src = ((src >> 1) | (src << 16)) & CDMASK;
break;
case 3: /* S */
src = ((src & 0377) << 8) | ((src >> 8) & 0377) |
(src & CBIT);
break;
} /* end switch shift */
switch (I_GETSKP (IR)) { /* decode skip */
case 0: /* nop */
if ((IR & I_NLD) && (cpu_unit.flags & UNIT_STK)) {
int_req = int_req | INT_TRAP ; /* Nova 3 or 4 trap */
continue ;
}
break;
case 1: /* SKP */
INCREMENT_PC ;
break;
case 2: /* SZC */
if (src < CBIT)
INCREMENT_PC ;
break;
case 3: /* SNC */
if (src >= CBIT)
INCREMENT_PC ;
break;
case 4: /* SZR */
if ((src & DMASK) == 0)
INCREMENT_PC ;
break;
case 5: /* SNR */
if ((src & DMASK) != 0)
INCREMENT_PC ;
break;
case 6: /* SEZ */
if (src <= CBIT)
INCREMENT_PC ;
break;
case 7: /* SBN */
if (src > CBIT)
INCREMENT_PC ;
break;
} /* end switch skip */
if ((IR & I_NLD) == 0) { /* load? */
AC[dstAC] = src & DMASK;
C = src & CBIT;
} /* end if load */
} /* end if operate */
/* Memory reference instructions */
else if (IR < 060000) { /* mem ref? */
int32 src, MA, indf;
MA = I_GETDISP (IR); /* get disp */
switch (I_GETMODE (IR)) { /* decode mode */
case 0: /* page zero */
break;
case 1: /* PC relative */
if (MA & DISPSIGN)
MA = 0177400 | MA;
MA = (MA + PC - 1) & AMASK;
break;
case 2: /* AC2 relative */
if (MA & DISPSIGN)
MA = 0177400 | MA;
MA = (MA + AC[2]) & AMASK;
break;
case 3: /* AC3 relative */
if (MA & DISPSIGN)
MA = 0177400 | MA;
MA = (MA + AC[3]) & AMASK;
break;
} /* end switch mode */
if ( (indf = IR & I_IND) ) { /* indirect? */
if ( MODE_64K_ACTIVE ) { /* 64k mode? */
indf = IND_STEP (MA);
}
else /* compat mode */
{
for (i = 0; indf && (i < ind_max); i++) { /* count */
indf = IND_STEP (MA); /* resolve indirect */
}
if (i >= ind_max) { /* too many? */
reason = STOP_IND;
break;
}
}
}
switch (I_GETOPAC (IR)) { /* decode op + AC */
case 001: /* JSR */
AC[3] = PC;
case 000: /* JMP */
PCQ_ENTRY;
PC = MA;
break;
case 002: /* ISZ */
src = (M[MA] + 1) & DMASK;
if (MEM_ADDR_OK(MA))
M[MA] = src;
if (src == 0)
INCREMENT_PC ;
break;
case 003: /* DSZ */
src = (M[MA] - 1) & DMASK;
if (MEM_ADDR_OK(MA))
M[MA] = src;
if (src == 0)
INCREMENT_PC ;
break;
case 004: /* LDA 0 */
AC[0] = M[MA];
break;
case 005: /* LDA 1 */
AC[1] = M[MA];
break;
case 006: /* LDA 2 */
AC[2] = M[MA];
break;
case 007: /* LDA 3 */
AC[3] = M[MA];
break;
case 010: /* STA 0 */
if (MEM_ADDR_OK(MA))
M[MA] = AC[0];
break;
case 011: /* STA 1 */
if (MEM_ADDR_OK(MA))
M[MA] = AC[1];
break;
case 012: /* STA 2 */
if (MEM_ADDR_OK(MA))
M[MA] = AC[2];
break;
case 013: /* STA 3 */
if (MEM_ADDR_OK(MA))
M[MA] = AC[3];
break;
} /* end switch */
} /* end mem ref */
/* IOT instruction */
else { /* IOT */
int32 dstAC, pulse, code, device, iodata;
dstAC = I_GETDST (IR); /* decode fields */
code = I_GETIOT (IR);
pulse = I_GETPULSE (IR);
device = I_GETDEV (IR);
if (code == ioSKP) { /* IO skip? */
switch (pulse) { /* decode IR<8:9> */
case 0: /* skip if busy */
if ((device == DEV_CPU)? (int_req & INT_ION) != 0:
(dev_busy & dev_table[device].mask) != 0)
INCREMENT_PC ;
break;
case 1: /* skip if not busy */
if ((device == DEV_CPU)? (int_req & INT_ION) == 0:
(dev_busy & dev_table[device].mask) == 0)
INCREMENT_PC ;
break;
case 2: /* skip if done */
if ((device == DEV_CPU)? pwr_low != 0:
(dev_done & dev_table[device].mask) != 0)
INCREMENT_PC ;
break;
case 3: /* skip if not done */
if ((device == DEV_CPU)? pwr_low == 0:
(dev_done & dev_table[device].mask) == 0)
INCREMENT_PC ;
break;
} /* end switch */
} /* end IO skip */
/* Hmm, this means a Nova 3 _must_ have DEV_MDV enabled - not true in DG land */
else if (device == DEV_MDV) {
switch (code) { /* case on opcode */
case ioNIO: /* frame ptr */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN)
FP = AC[dstAC] & AMASK ;
if (pulse == iopC)
AC[dstAC] = FP & AMASK ;
}
break;
case ioDIA: /* load byte */
if (cpu_unit.flags & UNIT_BYT)
{
AC[dstAC] = (M[AC[pulse] >> 1] >> ((AC[pulse] & 1)? 0: 8)) & 0377 ;
}
else if (cpu_unit.flags & UNIT_STK) /* if Nova 3 this is really a SAV... 2007-Jun-01, BKR */
{
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[0];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[1];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[2];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = FP;
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = (C >> 1) | (AC[3] & AMASK);
AC[3] = FP = SP & AMASK;
STK_CHECK (SP, 5);
}
else
{
AC[dstAC] = 0;
}
break;
case ioDOA: /* stack ptr */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN)
SP = AC[dstAC] & AMASK;
if (pulse == iopC)
AC[dstAC] = SP & AMASK;
}
break;
case ioDIB: /* push, pop */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN) { /* push (PSHA) */
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[dstAC];
STK_CHECK (SP, 1);
}
if ((pulse == iopS) && /* Nova 4 pshn (PSHN) */
(cpu_unit.flags & UNIT_BYT)) {
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[dstAC];
if ( (SP & 0xFFFF) > (M[042] & 0xFFFF) )
{
int_req = int_req | INT_STK ;
}
}
if (pulse == iopC) { /* pop (POPA) */
AC[dstAC] = M[SP];
SP = DECA (SP);
}
}
break;
case ioDOB: /* store byte */
if (cpu_unit.flags & UNIT_BYT)
{
int32 MA, val;
MA = AC[pulse] >> 1;
val = AC[dstAC] & 0377;
if (MEM_ADDR_OK (MA)) M[MA] = (AC[pulse] & 1)?
((M[MA] & ~0377) | val)
: ((M[MA] & 0377) | (val << 8));
}
else if (cpu_unit.flags & UNIT_STK) /* if Nova 3 this is really a SAV... 2007-Jun-01, BKR */
{
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[0];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[1];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[2];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = FP;
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = (C >> 1) | (AC[3] & AMASK);
AC[3] = FP = SP & AMASK;
STK_CHECK (SP, 5);
}
break;
case ioDIC: /* save, return */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN) { /* save */
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[0];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[1];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[2];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = FP;
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = (C >> 1) | (AC[3] & AMASK);
AC[3] = FP = SP & AMASK;
STK_CHECK (SP, 5);
}
else if (pulse == iopC) { /* retn */
PCQ_ENTRY;
SP = FP & AMASK;
C = (M[SP] << 1) & CBIT;
PC = M[SP] & AMASK;
SP = DECA (SP);
AC[3] = M[SP];
SP = DECA (SP);
AC[2] = M[SP];
SP = DECA (SP);
AC[1] = M[SP];
SP = DECA (SP);
AC[0] = M[SP];
SP = DECA (SP);
FP = AC[3] & AMASK;
}
else if ((pulse == iopS) && /* Nova 4 SAVN */
(cpu_unit.flags & UNIT_BYT)) {
int32 frameSz = M[PC] ;
PC = INCA (PC) ;
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[0];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[1];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[2];
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = FP;
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = (C >> 1) | (AC[3] & AMASK);
AC[3] = FP = SP & AMASK ;
SP = (SP + frameSz) & AMASK ;
if (SP > M[042])
{
int_req = int_req | INT_STK;
}
}
}
break;
case ioDOC:
if ((dstAC == 2) && (cpu_unit.flags & UNIT_MDV))
{ /* Nova, Nova3 or Nova 4 */
uint32 mddata, uAC0, uAC1, uAC2;
uAC0 = (uint32) AC[0];
uAC1 = (uint32) AC[1];
uAC2 = (uint32) AC[2];
if (pulse == iopP)
{ /* mul */
mddata = (uAC1 * uAC2) + uAC0;
AC[0] = (mddata >> 16) & DMASK;
AC[1] = mddata & DMASK;
}
if (pulse == iopS)
{ /* div */
if ((uAC0 >= uAC2) || (uAC2 == 0))
{
C = CBIT;
}
else
{
C = 0;
mddata = (uAC0 << 16) | uAC1;
AC[1] = mddata / uAC2;
AC[0] = mddata % uAC2;
}
}
}
else if ((dstAC == 3) && (cpu_unit.flags & UNIT_BYT) /* assuming UNIT_BYT = Nova 4 */)
{
int32 mddata;
if (pulse == iopC)
{ /* muls */
mddata = (SEXT (AC[1]) * SEXT (AC[2])) + SEXT (AC[0]);
AC[0] = (mddata >> 16) & DMASK;
AC[1] = mddata & DMASK;
}
else if (pulse == iopN)
{ /* divs */
if ((AC[2] == 0) || /* overflow? */
((AC[0] == 0100000) && (AC[1] == 0) && (AC[2] == 0177777)))
{
C = CBIT;
}
else
{
mddata = (SEXT (AC[0]) << 16) | AC[1];
AC[1] = mddata / SEXT (AC[2]);
AC[0] = mddata % SEXT (AC[2]);
if ((AC[1] > 077777) || (AC[1] < -0100000))
{
C = CBIT;
}
else
{
C = 0;
}
AC[0] = AC[0] & DMASK;
}
}
}
else if ((dstAC == 3) && (cpu_unit.flags & UNIT_STK)) /* if Nova 3 this is really a PSHA... 2007-Jun-01, BKR */
{
SP = INCA (SP);
if (MEM_ADDR_OK (SP))
M[SP] = AC[dstAC];
STK_CHECK (SP, 1);
}
break;
} /* end case code */
} /* end if mul/div */
else if (device == DEV_CPU) { /* CPU control */
switch (code) { /* decode IR<5:7> */
case ioNIO: /* NIOP <x> CPU ? */
if ( pulse == iopP )
if ( MODE_64K )
{
/* Keronix/Point4/SCI/INI/IDP (and others) */
/* 64 KW memory extension: */
/* NIOP - set memory mode (32/64 KW) per AC: */
/* B15: 0 = 32 KW, 1 = 64 KW mode */
AMASK = (AC[dstAC] & 0x0001) ? 0177777 : 077777 ;
}
break ;
case ioDIA: /* read switches */
AC[dstAC] = SR;
break;
case ioDIB: /* int ack */
AC[dstAC] = 0;
DEV_UPDATE_INTR ;
iodata = int_req & (-int_req);
for (i = DEV_LOW; i <= DEV_HIGH; i++) {
if (iodata & dev_table[i].mask) {
AC[dstAC] = i;
break;
}
}
break;
case ioDOB: /* mask out */
mask_out (pimask = AC[dstAC]);
break;
case ioDIC: /* io reset */
reset_all (0); /* reset devices */
mask_out( 0 ) ; /* clear all device masks */
AMASK = 077777 ; /* reset memory mode */
break;
case ioDOC: /* halt */
reason = STOP_HALT;
break;
} /* end switch code */
switch (pulse) { /* decode IR<8:9> */
case iopS: /* ion */
int_req = (int_req | INT_ION) & ~INT_NO_ION_PENDING;
break;
case iopC: /* iof */
int_req = int_req & ~INT_ION;
break;
} /* end switch pulse */
} /* end CPU control */
else if (dev_table[device].routine) { /* normal device */
iodata = dev_table[device].routine (pulse, code, AC[dstAC]);
reason = iodata >> IOT_V_REASON;
if (code & 1)
AC[dstAC] = iodata & 0177777;
}
/* bkr, 2007-May-30
* if device does not exist certain I/O instructions will still
* return data: DIA/B/C will return idle data bus value and
* SKPBZ/SKPDZ will sense zero value (and will therefore skip).
*
* Perform these non-supported device functions only if 'stop_dev'
* is zero (i.e. I/O access trap is not in effect).
*/
else if ( stop_dev == 0 )
{
switch (code) /* decode IR<5:7> */
{
case ioDIA:
case ioDIB:
case ioDIC:
AC[dstAC] = 0 ; /* idle I/O bus data */
break;
case ioSKP:
/* (This should have been caught in previous CPU skip code) */
if ( (pulse == 1 /* SKPBZ */) || (pulse == 3 /* SKPDZ */) )
{
INCREMENT_PC ;
}
} /* end of 'switch' */
} /* end of handling non-existant device */
else reason = stop_dev;
} /* end if IOT */
} /* end while */
/* Simulation halted */
saved_PC = PC;
pcq_r->qptr = pcq_p; /* update pc q ptr */
return ( reason ) ;
}
/* New priority mask out */
void mask_out (int32 newmask)
{
int32 i;
dev_disable = 0;
for (i = DEV_LOW; i <= DEV_HIGH; i++) {
if (newmask & dev_table[i].pi)
dev_disable = dev_disable | dev_table[i].mask;
}
DEV_UPDATE_INTR ;
return;
}
/* Reset routine */
t_stat cpu_reset (DEVICE *dptr)
{
int_req = int_req & ~(INT_ION | INT_STK | INT_TRAP);
pimask = 0;
dev_disable = 0;
pwr_low = 0;
AMASK = 077777 ; /* 32KW mode */
pcq_r = find_reg ("PCQ", NULL, dptr);
if (pcq_r)
pcq_r->qptr = 0;
else return SCPE_IERR;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
return SCPE_NXM;
if (vptr != NULL)
*vptr = M[addr] & DMASK;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
return SCPE_NXM;
M[addr] = val & DMASK;
return SCPE_OK;
}
/* Alter memory size */
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
t_addr i;
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0))
return SCPE_ARG;
for (i = val; i < MEMSIZE; i++)
mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++)
M[i] = 0;
return SCPE_OK;
}
/* Build dispatch table */
t_stat build_devtab (void)
{
DEVICE *dptr;
DIB *dibp;
int32 i, dn;
for (i = 0; i < 64; i++) { /* clr dev_table */
dev_table[i].mask = 0;
dev_table[i].pi = 0;
dev_table[i].routine = NULL;
}
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */
if (!(dptr->flags & DEV_DIS) && /* enabled and */
( (dibp = (DIB *) dptr->ctxt)) ) { /* defined DIB? */
dn = dibp->dnum; /* get dev num */
dev_table[dn].mask = dibp->mask; /* copy entries */
dev_table[dn].pi = dibp->pi;
dev_table[dn].routine = dibp->routine;
}
}
return SCPE_OK;
}
/* BKR notes:
*
* Data General APL (Automatic Program Load) boot code
*
* - This bootstrap code is called the "APL option" in DG documentation (Automatic
* Program Load), and cost ~$400 USD (in 1970 - wow!) to load 32(10) words from
* a PROM to main (core) memory location 0 - 32.
* - This code is documented in various DG Nova programming manuals and was
* quite static (i.e. no revisions or updates to code were made).
* - switch register is used to determine device code and device type.
* - lower 6-bits of switch register determines device code (0-63.).
* - most significant bit determines if device is "low speed" or "high speed".
* - "high speed" devices have effective boot program logic of:
*
* IORST
* NIOS <device>
* JMP .
*
* - "high speed" devices use data channel (DCH) to read first sector/record
* of device into memory (usually starting at location 0), which then over-writes
* the 'JMP .' instruction of boot code. This usually has a jump to some other
* device and operating system specific boot code that was loaded from the device.
* - "low speed" devices are assumed to be sequential character-oriented devices
* (i.e. Teletype (r) reader, paper tape reader).
* - "low speed" devices are assumed to start read operations with a 'S' pulse,
* read data buffer with a DIA instruction and have standard DG I/O Busy/Done logic.
* - "low speed" devices usually read in a more full-featured 'binary loader' with
* the APL boot code:
*
* DG paper tape: 091-000004-xx, Binary Loader (BLDR.AB)
*
* - The Binary Loader was in turn used to load tapes in the usual DG 'absolute binary' format.
*/
#define BOOT_START 00000
#define BOOT_LEN (sizeof(boot_rom) / sizeof(int32))
static const int32 boot_rom[] = {
0062677, /* IORST ;reset all I/O */
0060477, /* READS 0 ;read SR into AC0 */
0024026, /* LDA 1,C77 ;get dev mask */
0107400, /* AND 0,1 ;isolate dev code */
0124000, /* COM 1,1 ;- device code - 1 */
0010014, /* LOOP: ISZ OP1 ;device code to all */
0010030, /* ISZ OP2 ;I/O instructions */
0010032, /* ISZ OP3 */
0125404, /* INC 1,1,SZR ;done? */
0000005, /* JMP LOOP ;no, increment again */
0030016, /* LDA 2,C377 ;place JMP 377 into */
0050377, /* STA 2,377 ;location 377 */
0060077, /* OP1: 060077 ;start device (NIOS 0) */
0101102, /* MOVL 0,0,SZC ;test switch 0, low speed? */
0000377, /* C377: JMP 377 ;no - jmp 377 & wait */
0004030, /* LOOP2: JSR GET+1 ;get a frame */
0101065, /* MOVC 0,0,SNR ;is it non-zero? */
0000017, /* JMP LOOP2 ;no, ignore */
0004027, /* LOOP4: JSR GET ;yes, get full word */
0046026, /* STA 1,@C77 ;store starting at 100 */
/* ;2's complement of word ct */
0010100, /* ISZ 100 ;done? */
0000022, /* JMP LOOP4 ;no, get another */
0000077, /* C77: JMP 77 ;yes location ctr and */
/* ;jmp to last word */
0126420, /* GET: SUBZ 1,1 ; clr AC1, set carry */
/* OP2: */
0063577, /* LOOP3: 063577 ;done? (SKPDN 0) - 1 */
0000030, /* JMP LOOP3 ;no -- wait */
0060477, /* OP3: 060477 ;y -- read in ac0 (DIAS 0,0) */
0107363, /* ADDCS 0,1,SNC ;add 2 frames swapped - got 2nd? */
0000030, /* JMP LOOP3 ;no go back after it */
0125300, /* MOVS 1,1 ;yes swap them */
0001400, /* JMP 0,3 ;rtn with full word */
0000000 /* 0 ;padding */
};
t_stat cpu_boot (int32 unitno, DEVICE *dptr)
{
int32 i;
for (i = 0; i < BOOT_LEN; i++) M[BOOT_START + i] = boot_rom[i];
saved_PC = BOOT_START;
return SCPE_OK;
}
/* 1-to-1 map for I/O devices */
int32 MapAddr (int32 map, int32 addr)
{
return addr;
}
/* History subsystem
global routines
t_stat hist_set( UNIT * uptr, int32 val, char * cptr, void * desc, void ** HistCookie, sizeof(usrHistInfo) ) ;
t_stat hist_show( FILE * st, UNIT * uptr, int32 val, void * desc, void * HistCookie ) ;
int hist_save( int32 next_pc, int32 our_ir, void * usrHistInfo )
local user struct:
usrHistInfo
local user routines:
int uHist_save( int32 next_pc, int32 our_ir, void * usrHistInfo ) ;
int uHist_fprintf( FILE * fp, int itemNum, void * usrHistInfo ) ;
typedef struct
{
int hMax ; // total # entries in queue (0 = inactive)
int hCount ; // current entry
void * hPtr ; // pointer to save area
int hSize ; // size of each user save area (not used by global routines?)
} Hist_info ;
*/
/* generalized CPU execution trace */
#define HIST_IR_INVALID -1
#define HIST_MIN 0 /* 0 == deactivate history feature, else size of queue */
#define HIST_MAX 1000000 /* completely arbitrary max size value */
/* save history entry (proposed local routine) */
static int hist_save( int32 pc, int32 our_ir )
{
Hist_entry * hist_ptr ;
if ( hist )
if ( hist_cnt )
{
hist_p = (hist_p + 1) ; /* next entry */
if ( hist_p >= hist_cnt )
{
hist_p = 0 ;
}
hist_ptr = &hist[ hist_p ] ;
/* (machine-specific stuff) */
hist_ptr->pc = pc ;
hist_ptr->ir = our_ir ;
hist_ptr->ac0 = AC[ 0 ] ;
hist_ptr->ac1 = AC[ 1 ] ;
hist_ptr->ac2 = AC[ 2 ] ;
hist_ptr->ac3 = AC[ 3 ] ;
hist_ptr->carry = C ;
hist_ptr->fp = FP ;
hist_ptr->sp = SP ;
hist_ptr->devBusy = dev_busy ;
hist_ptr->devDone = dev_done ;
hist_ptr->devDisable = dev_disable ;
hist_ptr->devIntr = int_req ;
/* how 'bout state and AMASK? */
return ( hist_p ) ;
}
return ( -1 ) ;
} /* end of 'hist_save' */
/* setup history save area (proposed global routine) */
t_stat hist_set( UNIT * uptr, int32 val, char * cptr, void * desc )
{
int32 i, lnt ;
t_stat r ;
if ( cptr == NULL )
{
for (i = 0 ; i < hist_cnt ; ++i )
{
hist[i].pc = 0 ;
hist[i].ir = HIST_IR_INVALID ;
}
hist_p = 0 ;
return ( SCPE_OK ) ;
}
lnt = (int32) get_uint(cptr, 10, HIST_MAX, &r) ;
if ( (r != SCPE_OK) || (lnt && (lnt < HIST_MIN)) )
{
return ( SCPE_ARG ) ;
}
hist_p = 0;
if ( hist_cnt )
{
free( hist ) ;
hist_cnt = 0 ;
hist = NULL ;
}
if ( lnt )
{
hist = (Hist_entry *) calloc( lnt, sizeof(Hist_entry) ) ;
if ( hist == NULL )
{
return ( SCPE_MEM ) ;
}
hist_cnt = lnt ;
}
return ( SCPE_OK ) ;
} /* end of 'hist_set' */
int hist_fprintf( FILE * fp, int itemNum, Hist_entry * hptr )
{
t_value sim_eval ;
if ( hptr )
{
if ( itemNum == 0 )
{
fprintf( fp, "\n\n" ) ;
}
fprintf( fp, "%05o / %06o %06o %06o %06o %06o %o ",
(hptr->pc & 0x7FFF),
(hptr->ir & 0xFFFF),
(hptr->ac0 & 0xFFFF),
(hptr->ac1 & 0xFFFF),
(hptr->ac2 & 0xFFFF),
(hptr->ac3 & 0xFFFF),
((hptr->carry) ? 1 : 0)
) ;
if ( cpu_unit.flags & UNIT_STK /* Nova 3 or Nova 4 */ )
{
fprintf( fp, "%06o %06o ", SP, FP ) ;
}
sim_eval = (hptr->ir & 0xFFFF) ;
if ( (fprint_sym(fp, (hptr->pc & AMASK), &sim_eval, &cpu_unit, SWMASK ('M'))) > 0 )
{
fprintf( fp, "(undefined) %04o", (hptr->ir & 0xFFFF) ) ;
}
/*
display ION flag value, pend value?
display devBusy, devDone, devIntr info?
*/
if ( 0 ) /* display INTRP codes? */
{
char tmp[ 500 ] ;
devBitNames( hptr->devIntr, tmp, NULL ) ;
fprintf( fp, " %s", tmp ) ;
}
fprintf( fp, "\n" ) ;
}
return ( 0 ) ;
} /* end of 'hist_fprintf' */
/* show execution history (proposed global routine) */
t_stat hist_show( FILE * st, UNIT * uptr, int32 val, void * desc )
{
int32 k, di, lnt ;
char * cptr = (char *) desc ;
t_stat r ;
Hist_entry * hptr ;
if (hist_cnt == 0)
{
return ( SCPE_NOFNC ) ; /* enabled? */
}
if ( cptr )
{ /* number of entries specified */
lnt = (int32) get_uint( cptr, 10, hist_cnt, &r ) ;
if ( (r != SCPE_OK) || (lnt == 0) )
{
return ( SCPE_ARG ) ;
}
}
else
{
lnt = hist_cnt ; /* display all entries */
}
di = hist_p - lnt; /* work forward */
if ( di < 0 )
{
di = di + hist_cnt ;
}
for ( k = 0 ; k < lnt ; ++k )
{ /* print specified */
hptr = &hist[ (++di) % hist_cnt] ; /* entry pointer */
if ( hptr->ir != HIST_IR_INVALID ) /* valid entry? */
{
hist_fprintf( st, k, hptr ) ;
} /* end else instruction */
} /* end for */
return SCPE_OK;
} /* end of 'hist_show' */
struct Dbits
{
int32 dBit ;
int32 dInvertMask ;
char * dName ;
} devBits [] =
{
{ INT_TRAP, 0, "TRAP" }, /* (in order of approximate DG interrupt mask priority) */
{ INT_ION, 0, "ION" },
{ INT_NO_ION_PENDING, 1, "IONPND" }, /* (invert this logic to provide cleaner display) */
{ INT_STK, 0, "STK" },
{ INT_PIT, 0, "PIT" },
{ INT_DKP, 0, "DKP" },
{ INT_DSK, 0, "DSK" },
{ INT_MTA, 0, "MTA" },
{ INT_LPT, 0, "LPT" },
{ INT_PTR, 0, "PTR" },
{ INT_PTP, 0, "PTP" },
{ INT_PLT, 0, "PLT" },
{ INT_CLK, 0, "CLK" },
{ INT_ALM, 0, "ALM" },
{ INT_QTY, 0, "QTY" },
{ INT_TTO1, 0, "TTO1" },
{ INT_TTI1, 0, "TTI1" },
{ INT_TTO, 0, "TTO" },
{ INT_TTI, 0, "TTI" },
{ 0, 0, NULL }
} ;
char * devBitNames( int32 flags, char * ptr, char * sepStr )
{
int a ;
if ( ptr )
{
*ptr = 0 ;
for ( a = 0 ; (devBits[a].dBit) ; ++a )
if ( devBits[a].dBit & ((devBits[a].dInvertMask)? ~flags : flags) )
{
if ( *ptr )
{
strcat( ptr, (sepStr) ? sepStr : " " ) ;
strcat( ptr, devBits[a].dName ) ;
}
else
{
strcpy( ptr, devBits[a].dName ) ;
}
}
}
return ( ptr ) ;
} /* end of 'devBitNames' */
|