File: vax_sysdev.c

package info (click to toggle)
simh 3.8.1-6.2
  • links: PTS
  • area: main
  • in suites: sid
  • size: 16,328 kB
  • sloc: ansic: 209,819; makefile: 325
file content (1603 lines) | stat: -rw-r--r-- 50,611 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
/* vax_sysdev.c: VAX 3900 system-specific logic

   Copyright (c) 1998-2008, Robert M Supnik

   Permission is hereby granted, free of charge, to any person obtaining a
   copy of this software and associated documentation files (the "Software"),
   to deal in the Software without restriction, including without limitation
   the rights to use, copy, modify, merge, publish, distribute, sublicense,
   and/or sell copies of the Software, and to permit persons to whom the
   Software is furnished to do so, subject to the following conditions:

   The above copyright notice and this permission notice shall be included in
   all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
   ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
   IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

   Except as contained in this notice, the name of Robert M Supnik shall not be
   used in advertising or otherwise to promote the sale, use or other dealings
   in this Software without prior written authorization from Robert M Supnik.

   This module contains the CVAX chip and VAX 3900 system-specific registers
   and devices.

   rom          bootstrap ROM (no registers)
   nvr          non-volatile ROM (no registers)
   csi          console storage input
   cso          console storage output
   sysd         system devices (SSC miscellany)

   25-Oct-05    RMS     Automated CMCTL extended memory
   16-Aug-05    RMS     Fixed C++ declaration and cast problems
   10-Mar-05    RMS     Fixed bug in timer schedule routine (from Mark Hittinger)
   30-Sep-04    RMS     Moved CADR, MSER, CONPC, CONPSL, machine_check, cpu_boot,
                         con_halt here from vax_cpu.c
                        Moved model-specific IPR's here from vax_cpu1.c
   09-Sep-04    RMS     Integrated powerup into RESET (with -p)
                        Added model-specific registers and routines from CPU
   23-Jan-04    MP      Added extended physical memory support (Mark Pizzolato)
   07-Jun-03    MP      Added calibrated delay to ROM reads (Mark Pizzolato)
                        Fixed calibration problems interval timer (Mark Pizzolato)
   12-May-03    RMS     Fixed compilation warnings from VC.Net
   23-Apr-03    RMS     Revised for 32b/64b t_addr
   19-Aug-02    RMS     Removed unused variables (found by David Hittner)
                        Allowed NVR to be attached to file
   30-May-02    RMS     Widened POS to 32b
   28-Feb-02    RMS     Fixed bug, missing end of table (found by Lars Brinkhoff)
*/

#include "vax_defs.h"

#define UNIT_V_NODELAY  (UNIT_V_UF + 0)                 /* ROM access equal to RAM access */
#define UNIT_NODELAY    (1u << UNIT_V_NODELAY)

/* Console storage control/status */

#define CSICSR_IMP      (CSR_DONE + CSR_IE)             /* console input */
#define CSICSR_RW       (CSR_IE)
#define CSOCSR_IMP      (CSR_DONE + CSR_IE)             /* console output */
#define CSOCSR_RW       (CSR_IE)

/* CMCTL configuration registers */

#define CMCNF_VLD       0x80000000                      /* addr valid */
#define CMCNF_BA        0x1FF00000                      /* base addr */
#define CMCNF_LOCK      0x00000040                      /* lock NI */
#define CMCNF_SRQ       0x00000020                      /* sig req WO */
#define CMCNF_SIG       0x0000001F                      /* signature */
#define CMCNF_RW        (CMCNF_VLD | CMCNF_BA)          /* read/write */
#define CMCNF_MASK      (CMCNF_RW | CMCNF_SIG)
#define MEM_BANK        (1 << 22)                       /* bank size 4MB */
#define MEM_SIG         (0x17)                          /* ECC, 4 x 4MB */

/* CMCTL error register */

#define CMERR_RDS       0x80000000                      /* uncorr err NI */
#define CMERR_FRQ       0x40000000                      /* 2nd RDS NI */
#define CMERR_CRD       0x20000000                      /* CRD err NI */
#define CMERR_PAG       0x1FFFFC00                      /* page addr NI */
#define CMERR_DMA       0x00000100                      /* DMA err NI */
#define CMERR_BUS       0x00000080                      /* bus err NI */
#define CMERR_SYN       0x0000007F                      /* syndrome NI */
#define CMERR_W1C       (CMERR_RDS | CMERR_FRQ | CMERR_CRD | \
                         CMERR_DMA | CMERR_BUS)

/* CMCTL control/status register */

#define CMCSR_PMI       0x00002000                      /* PMI speed NI */
#define CMCSR_CRD       0x00001000                      /* enb CRD int NI */
#define CMCSR_FRF       0x00000800                      /* force ref WONI */
#define CMCSR_DET       0x00000400                      /* dis err NI */
#define CMCSR_FDT       0x00000200                      /* fast diag NI */
#define CMCSR_DCM       0x00000080                      /* diag mode NI */
#define CMCSR_SYN       0x0000007F                      /* syndrome NI */
#define CMCSR_MASK      (CMCSR_PMI | CMCSR_CRD | CMCSR_DET | \
                         CMCSR_FDT | CMCSR_DCM | CMCSR_SYN)

/* KA655 boot/diagnostic register */

#define BDR_BRKENB      0x00000080                      /* break enable */

/* KA655 cache control register */

#define CACR_DRO        0x00FFFF00                      /* diag bits RO */
#define CACR_V_DPAR     24                              /* data parity */
#define CACR_FIXED      0x00000040                      /* fixed bits */
#define CACR_CPE        0x00000020                      /* parity err W1C */
#define CACR_CEN        0x00000010                      /* enable */                    
#define CACR_DPE        0x00000004                      /* disable par NI */
#define CACR_WWP        0x00000002                      /* write wrong par NI */
#define CACR_DIAG       0x00000001                      /* diag mode */
#define CACR_W1C        (CACR_CPE)
#define CACR_RW         (CACR_CEN | CACR_DPE | CACR_WWP | CACR_DIAG)

/* SSC base register */

#define SSCBASE_MBO     0x20000000                      /* must be one */
#define SSCBASE_RW      0x1FFFFC00                      /* base address */

/* SSC configuration register */

#define SSCCNF_BLO      0x80000000                      /* batt low W1C */
#define SSCCNF_IVD      0x08000000                      /* int dsbl NI */
#define SSCCNF_IPL      0x03000000                      /* int IPL NI */
#define SSCCNF_ROM      0x00F70000                      /* ROM param NI */
#define SSCCNF_CTLP     0x00008000                      /* ctrl P enb */
#define SSCCNF_BAUD     0x00007700                      /* baud rates NI */
#define SSCCNF_ADS      0x00000077                      /* addr strb NI */
#define SSCCNF_W1C      SSCCNF_BLO
#define SSCCNF_RW       0x0BF7F777

/* SSC timeout register */

#define SSCBTO_BTO      0x80000000                      /* timeout W1C */
#define SSCBTO_RWT      0x40000000                      /* read/write W1C */
#define SSCBTO_INTV     0x00FFFFFF                      /* interval NI */
#define SSCBTO_W1C      (SSCBTO_BTO | SSCBTO_RWT)
#define SSCBTO_RW       SSCBTO_INTV

/* SSC output port */

#define SSCOTP_MASK     0x0000000F                      /* output port */

/* SSC timer control/status */

#define TMR_CSR_ERR     0x80000000                      /* error W1C */
#define TMR_CSR_DON     0x00000080                      /* done W1C */
#define TMR_CSR_IE      0x00000040                      /* int enb */
#define TMR_CSR_SGL     0x00000020                      /* single WO */
#define TMR_CSR_XFR     0x00000010                      /* xfer WO */
#define TMR_CSR_STP     0x00000004                      /* stop */
#define TMR_CSR_RUN     0x00000001                      /* run */
#define TMR_CSR_W1C     (TMR_CSR_ERR | TMR_CSR_DON)
#define TMR_CSR_RW      (TMR_CSR_IE | TMR_CSR_STP | TMR_CSR_RUN)

/* SSC timer intervals */

#define TMR_INC         10000                           /* usec/interval */

/* SSC timer vector */

#define TMR_VEC_MASK    0x000003FC                      /* vector */

/* SSC address strobes */

#define SSCADS_MASK     0x3FFFFFFC                      /* match or mask */

extern int32 R[16];
extern int32 STK[5];
extern int32 PSL;
extern int32 SISR;
extern int32 mapen;
extern int32 pcq[PCQ_SIZE];
extern int32 pcq_p;
extern int32 ibcnt, ppc;
extern int32 in_ie;
extern int32 mchk_va, mchk_ref;
extern int32 fault_PC;
extern int32 int_req[IPL_HLVL];
extern UNIT cpu_unit;
extern UNIT clk_unit;
extern jmp_buf save_env;
extern int32 p1;
extern int32 sim_switches;
extern int32 MSER;
extern int32 tmr_poll;

uint32 *rom = NULL;                                     /* boot ROM */
uint32 *nvr = NULL;                                     /* non-volatile mem */
int32 CADR = 0;                                         /* cache disable reg */
int32 MSER = 0;                                         /* mem sys error reg */
int32 conpc, conpsl;                                    /* console reg */
int32 csi_csr = 0;                                      /* control/status */
int32 cso_csr = 0;                                      /* control/status */
int32 cmctl_reg[CMCTLSIZE >> 2] = { 0 };                /* CMCTL reg */
int32 ka_cacr = 0;                                      /* KA655 cache ctl */
int32 ka_bdr = BDR_BRKENB;                              /* KA655 boot diag */
int32 ssc_base = SSCBASE;                               /* SSC base */
int32 ssc_cnf = 0;                                      /* SSC conf */
int32 ssc_bto = 0;                                      /* SSC timeout */
int32 ssc_otp = 0;                                      /* SSC output port */
int32 tmr_csr[2] = { 0 };                               /* SSC timers */
uint32 tmr_tir[2] = { 0 };                              /* curr interval */
uint32 tmr_tnir[2] = { 0 };                             /* next interval */
int32 tmr_tivr[2] = { 0 };                              /* vector */
uint32 tmr_inc[2] = { 0 };                              /* tir increment */
uint32 tmr_sav[2] = { 0 };                              /* saved inst cnt */
int32 ssc_adsm[2] = { 0 };                              /* addr strobes */
int32 ssc_adsk[2] = { 0 };
int32 cdg_dat[CDASIZE >> 2];                            /* cache data */
static uint32 rom_delay = 0;

t_stat rom_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw);
t_stat rom_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw);
t_stat rom_reset (DEVICE *dptr);
t_stat nvr_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw);
t_stat nvr_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw);
t_stat nvr_reset (DEVICE *dptr);
t_stat nvr_attach (UNIT *uptr, char *cptr);
t_stat nvr_detach (UNIT *uptr);
t_stat csi_reset (DEVICE *dptr);
t_stat cso_reset (DEVICE *dptr);
t_stat cso_svc (UNIT *uptr);
t_stat tmr_svc (UNIT *uptr);
t_stat sysd_reset (DEVICE *dptr);

int32 rom_rd (int32 pa);
int32 nvr_rd (int32 pa);
void nvr_wr (int32 pa, int32 val, int32 lnt);
int32 csrs_rd (void);
int32 csrd_rd (void);
int32 csts_rd (void);
void csrs_wr (int32 dat);
void csts_wr (int32 dat);
void cstd_wr (int32 dat);
int32 cmctl_rd (int32 pa);
void cmctl_wr (int32 pa, int32 val, int32 lnt);
int32 ka_rd (int32 pa);
void ka_wr (int32 pa, int32 val, int32 lnt);
int32 cdg_rd (int32 pa);
void cdg_wr (int32 pa, int32 val, int32 lnt);
int32 ssc_rd (int32 pa);
void ssc_wr (int32 pa, int32 val, int32 lnt);
int32 tmr_tir_rd (int32 tmr, t_bool interp);
void tmr_csr_wr (int32 tmr, int32 val);
void tmr_sched (int32 tmr);
void tmr_incr (int32 tmr, uint32 inc);
int32 tmr0_inta (void);
int32 tmr1_inta (void);
int32 parity (int32 val, int32 odd);
t_stat sysd_powerup (void);

extern int32 intexc (int32 vec, int32 cc, int32 ipl, int ei);
extern int32 cqmap_rd (int32 pa);
extern void cqmap_wr (int32 pa, int32 val, int32 lnt);
extern int32 cqipc_rd (int32 pa);
extern void cqipc_wr (int32 pa, int32 val, int32 lnt);
extern int32 cqbic_rd (int32 pa);
extern void cqbic_wr (int32 pa, int32 val, int32 lnt);
extern int32 cqmem_rd (int32 pa);
extern void cqmem_wr (int32 pa, int32 val, int32 lnt);
extern int32 iccs_rd (void);
extern int32 todr_rd (void);
extern int32 rxcs_rd (void);
extern int32 rxdb_rd (void);
extern int32 txcs_rd (void);
extern void iccs_wr (int32 dat);
extern void todr_wr (int32 dat);
extern void rxcs_wr (int32 dat);
extern void txcs_wr (int32 dat);
extern void txdb_wr (int32 dat);
extern void ioreset_wr (int32 dat);
extern uint32 sim_os_msec();

/* ROM data structures

   rom_dev      ROM device descriptor
   rom_unit     ROM units
   rom_reg      ROM register list
*/

UNIT rom_unit = { UDATA (NULL, UNIT_FIX+UNIT_BINK, ROMSIZE) };

REG rom_reg[] = {
    { NULL }
    };

MTAB rom_mod[] = {
    { UNIT_NODELAY, UNIT_NODELAY, "fast access", "NODELAY", NULL },
    { UNIT_NODELAY, 0, "1usec calibrated access", "DELAY", NULL },
    { 0 }
    };

DEVICE rom_dev = {
    "ROM", &rom_unit, rom_reg, rom_mod,
    1, 16, ROMAWIDTH, 4, 16, 32,
    &rom_ex, &rom_dep, &rom_reset,
    NULL, NULL, NULL,
    NULL, 0
    };

/* NVR data structures

   nvr_dev      NVR device descriptor
   nvr_unit     NVR units
   nvr_reg      NVR register list
*/

UNIT nvr_unit =
    { UDATA (NULL, UNIT_FIX+UNIT_BINK, NVRSIZE) };

REG nvr_reg[] = {
    { NULL }
    };

DEVICE nvr_dev = {
    "NVR", &nvr_unit, nvr_reg, NULL,
    1, 16, NVRAWIDTH, 4, 16, 32,
    &nvr_ex, &nvr_dep, &nvr_reset,
    NULL, &nvr_attach, &nvr_detach,
    NULL, 0
    };

/* CSI data structures

   csi_dev      CSI device descriptor
   csi_unit     CSI unit descriptor
   csi_reg      CSI register list
*/

DIB csi_dib = { 0, 0, NULL, NULL, 1, IVCL (CSI), SCB_CSI, { NULL } };

UNIT csi_unit = { UDATA (NULL, 0, 0), KBD_POLL_WAIT };

REG csi_reg[] = {
    { ORDATA (BUF, csi_unit.buf, 8) },
    { ORDATA (CSR, csi_csr, 16) },
    { FLDATA (INT, int_req[IPL_CSI], INT_V_CSI) },
    { FLDATA (DONE, csi_csr, CSR_V_DONE) },
    { FLDATA (IE, csi_csr, CSR_V_IE) },
    { DRDATA (POS, csi_unit.pos, 32), PV_LEFT },
    { DRDATA (TIME, csi_unit.wait, 24), REG_NZ + PV_LEFT },
    { NULL }
    };

MTAB csi_mod[] = {
    { MTAB_XTD|MTAB_VDV, 0, "VECTOR", NULL,     NULL, &show_vec },
    { 0 }
    };

DEVICE csi_dev = {
    "CSI", &csi_unit, csi_reg, csi_mod,
    1, 10, 31, 1, 8, 8,
    NULL, NULL, &csi_reset,
    NULL, NULL, NULL,
    &csi_dib, 0
    };

/* CSO data structures

   cso_dev      CSO device descriptor
   cso_unit     CSO unit descriptor
   cso_reg      CSO register list
*/

DIB cso_dib = { 0, 0, NULL, NULL, 1, IVCL (CSO), SCB_CSO, { NULL } };

UNIT cso_unit = { UDATA (&cso_svc, UNIT_SEQ+UNIT_ATTABLE, 0), SERIAL_OUT_WAIT };

REG cso_reg[] = {
    { ORDATA (BUF, cso_unit.buf, 8) },
    { ORDATA (CSR, cso_csr, 16) },
    { FLDATA (INT, int_req[IPL_CSO], INT_V_CSO) },
    { FLDATA (DONE, cso_csr, CSR_V_DONE) },
    { FLDATA (IE, cso_csr, CSR_V_IE) },
    { DRDATA (POS, cso_unit.pos, 32), PV_LEFT },
    { DRDATA (TIME, cso_unit.wait, 24), PV_LEFT },
    { NULL }
    };

MTAB cso_mod[] = {
    { MTAB_XTD|MTAB_VDV, 0, "VECTOR", NULL,     NULL, &show_vec },
    { 0 }
    };

DEVICE cso_dev = {
    "CSO", &cso_unit, cso_reg, cso_mod,
    1, 10, 31, 1, 8, 8,
    NULL, NULL, &cso_reset,
    NULL, NULL, NULL,
    &cso_dib, 0
    };

/* SYSD data structures

   sysd_dev     SYSD device descriptor
   sysd_unit    SYSD units
   sysd_reg     SYSD register list
*/

DIB sysd_dib[] = {
    0, 0, NULL, NULL,
    2, IVCL (TMR0), 0, { &tmr0_inta, &tmr1_inta }
    };

UNIT sysd_unit[] = {
    { UDATA (&tmr_svc, 0, 0) },
    { UDATA (&tmr_svc, 0, 0) }
    };

REG sysd_reg[] = {
    { HRDATA (CADR, CADR, 8) },
    { HRDATA (MSER, MSER, 8) },
    { HRDATA (CONPC, conpc, 32) },
    { HRDATA (CONPSL, conpsl, 32) },
    { BRDATA (CMCSR, cmctl_reg, 16, 32, CMCTLSIZE >> 2) },
    { HRDATA (CACR, ka_cacr, 8) },
    { HRDATA (BDR, ka_bdr, 8) },
    { HRDATA (BASE, ssc_base, 29) },
    { HRDATA (CNF, ssc_cnf, 32) },
    { HRDATA (BTO, ssc_bto, 32) },
    { HRDATA (OTP, ssc_otp, 4) },
    { HRDATA (TCSR0, tmr_csr[0], 32) },
    { HRDATA (TIR0, tmr_tir[0], 32) },
    { HRDATA (TNIR0, tmr_tnir[0], 32) },
    { HRDATA (TIVEC0, tmr_tivr[0], 9) },
    { HRDATA (TINC0, tmr_inc[0], 32) },
    { HRDATA (TSAV0, tmr_sav[0], 32) },
    { HRDATA (TCSR1, tmr_csr[1], 32) },
    { HRDATA (TIR1, tmr_tir[1], 32) },
    { HRDATA (TNIR1, tmr_tnir[1], 32) },
    { HRDATA (TIVEC1, tmr_tivr[1], 9) },
    { HRDATA (TINC1, tmr_inc[1], 32) },
    { HRDATA (TSAV1, tmr_sav[1], 32) },
    { HRDATA (ADSM0, ssc_adsm[0], 32) },
    { HRDATA (ADSK0, ssc_adsk[0], 32) },
    { HRDATA (ADSM1, ssc_adsm[1], 32) },
    { HRDATA (ADSK1, ssc_adsk[1], 32) },
    { BRDATA (CDGDAT, cdg_dat, 16, 32, CDASIZE >> 2) },
    { NULL }
    };

DEVICE sysd_dev = {
    "SYSD", sysd_unit, sysd_reg, NULL,
    2, 16, 16, 1, 16, 8,
    NULL, NULL, &sysd_reset,
    NULL, NULL, NULL,
    &sysd_dib, 0
    };

/* ROM: read only memory - stored in a buffered file
   Register space access routines see ROM twice

   ROM access has been 'regulated' to about 1Mhz to avoid issues
   with testing the interval timers in self-test.  Specifically,
   the VAX boot ROM (ka655.bin) contains code which presumes that
   the VAX runs at a particular slower speed when code is running
   from ROM (which is not cached).  These assumptions are built
   into instruction based timing loops. As the host platform gets
   much faster than the original VAX, the assumptions embedded in
   these code loops are no longer valid.
   
   Code has been added to the ROM implementation to limit CPU speed
   to about 500K instructions per second.  This heads off any future
   issues with the embedded timing loops.  
*/

int32 rom_swapb(int32 val)
{
return ((val << 24) & 0xff000000) | (( val << 8) & 0xff0000) |
    ((val >> 8) & 0xff00) | ((val >> 24) & 0xff);
}

int32 rom_read_delay (int32 val)
{
uint32 i, l = rom_delay;
int32 loopval = 0;

if (rom_unit.flags & UNIT_NODELAY)
    return val;

/* Calibrate the loop delay factor when first used.
   Do this 4 times to and use the largest value computed. */

if (rom_delay == 0) {
    uint32 ts, te, c = 10000, samples = 0;
    while (1) {
        c = c * 2;
        te = sim_os_msec();
        while (te == (ts = sim_os_msec ()));            /* align on ms tick */

/* This is merely a busy wait with some "work" that won't get optimized
   away by a good compiler. loopval always is zero.  To avoid smart compilers,
   the loopval variable is referenced in the function arguments so that the
   function expression is not loop invariant.  It also must be referenced
   by subsequent code or to avoid the whole computation being eliminated. */

        for (i = 0; i < c; i++)
            loopval |= (loopval + ts) ^ rom_swapb (rom_swapb (loopval + ts));
        te = sim_os_msec (); 
        if ((te - ts) < 50)                         /* sample big enough? */
            continue;
        if (rom_delay < (loopval + (c / (te - ts) / 1000) + 1))
            rom_delay = loopval + (c / (te - ts) / 1000) + 1;
        if (++samples >= 4)
            break;
        c = c / 2;
        }
    if (rom_delay < 5)
        rom_delay = 5;
    }

for (i = 0; i < l; i++)
    loopval |= (loopval + val) ^ rom_swapb (rom_swapb (loopval + val));
return val + loopval;
}

int32 rom_rd (int32 pa)
{
int32 rg = ((pa - ROMBASE) & ROMAMASK) >> 2;

return rom_read_delay (rom[rg]);
}

void rom_wr_B (int32 pa, int32 val)
{
int32 rg = ((pa - ROMBASE) & ROMAMASK) >> 2;
int32 sc = (pa & 3) << 3;

rom[rg] = ((val & 0xFF) << sc) | (rom[rg] & ~(0xFF << sc));
return;
}

/* ROM examine */

t_stat rom_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw)
{
uint32 addr = (uint32) exta;

if ((vptr == NULL) || (addr & 03))
    return SCPE_ARG;
if (addr >= ROMSIZE)
    return SCPE_NXM;
*vptr = rom[addr >> 2];
return SCPE_OK;
}

/* ROM deposit */

t_stat rom_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw)
{
uint32 addr = (uint32) exta;

if (addr & 03)
    return SCPE_ARG;
if (addr >= ROMSIZE)
    return SCPE_NXM;
rom[addr >> 2] = (uint32) val;
return SCPE_OK;
}

/* ROM reset */

t_stat rom_reset (DEVICE *dptr)
{
if (rom == NULL)
    rom = (uint32 *) calloc (ROMSIZE >> 2, sizeof (uint32));
if (rom == NULL)
    return SCPE_MEM;
return SCPE_OK;
}

/* NVR: non-volatile RAM - stored in a buffered file */

int32 nvr_rd (int32 pa)
{
int32 rg = (pa - NVRBASE) >> 2;

return nvr[rg];
}

void nvr_wr (int32 pa, int32 val, int32 lnt)
{
int32 rg = (pa - NVRBASE) >> 2;

if (lnt < L_LONG) {                                     /* byte or word? */
    int32 sc = (pa & 3) << 3;                           /* merge */
    int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
    nvr[rg] = ((val & mask) << sc) | (nvr[rg] & ~(mask << sc));
    }
else nvr[rg] = val;
return;
}

/* NVR examine */

t_stat nvr_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw)
{
uint32 addr = (uint32) exta;

if ((vptr == NULL) || (addr & 03))
    return SCPE_ARG;
if (addr >= NVRSIZE)
    return SCPE_NXM;
*vptr = nvr[addr >> 2];
return SCPE_OK;
}

/* NVR deposit */

t_stat nvr_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw)
{
uint32 addr = (uint32) exta;

if (addr & 03)
    return SCPE_ARG;
if (addr >= NVRSIZE)
    return SCPE_NXM;
nvr[addr >> 2] = (uint32) val;
return SCPE_OK;
}

/* NVR reset */

t_stat nvr_reset (DEVICE *dptr)
{
if (nvr == NULL) {
    nvr = (uint32 *) calloc (NVRSIZE >> 2, sizeof (uint32));
    nvr_unit.filebuf = nvr;
    ssc_cnf = ssc_cnf | SSCCNF_BLO;
    }
if (nvr == NULL)
    return SCPE_MEM;
return SCPE_OK;
}

/* NVR attach */

t_stat nvr_attach (UNIT *uptr, char *cptr)
{
t_stat r;

uptr->flags = uptr->flags | (UNIT_ATTABLE | UNIT_BUFABLE);
r = attach_unit (uptr, cptr);
if (r != SCPE_OK)
    uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
else {
    uptr->hwmark = (uint32) uptr->capac;
    ssc_cnf = ssc_cnf & ~SSCCNF_BLO;
    }
return r;
}

/* NVR detach */

t_stat nvr_detach (UNIT *uptr)
{
t_stat r;

r = detach_unit (uptr);
if ((uptr->flags & UNIT_ATT) == 0)
    uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
return r;
}

/* CSI: console storage input */

int32 csrs_rd (void)
{
return (csi_csr & CSICSR_IMP);
}

int32 csrd_rd (void)
{
csi_csr = csi_csr & ~CSR_DONE;
CLR_INT (CSI);
return (csi_unit.buf & 0377);
}

void csrs_wr (int32 data)
{
if ((data & CSR_IE) == 0)
    CLR_INT (CSI);
else if ((csi_csr & (CSR_DONE + CSR_IE)) == CSR_DONE)
    SET_INT (CSI);
csi_csr = (csi_csr & ~CSICSR_RW) | (data & CSICSR_RW);
return;
}

t_stat csi_reset (DEVICE *dptr)
{
csi_unit.buf = 0;
csi_csr = 0;
CLR_INT (CSI);
return SCPE_OK;
}

/* CSO: console storage output */

int32 csts_rd (void)
{
return (cso_csr & CSOCSR_IMP);
}

void csts_wr (int32 data)
{
if ((data & CSR_IE) == 0)
    CLR_INT (CSO);
else if ((cso_csr & (CSR_DONE + CSR_IE)) == CSR_DONE)
    SET_INT (CSO);
cso_csr = (cso_csr & ~CSOCSR_RW) | (data & CSOCSR_RW);
return;
}

void cstd_wr (int32 data)
{
cso_unit.buf = data & 0377;
cso_csr = cso_csr & ~CSR_DONE;
CLR_INT (CSO);
sim_activate (&cso_unit, cso_unit.wait);
return;
}

t_stat cso_svc (UNIT *uptr)
{
cso_csr = cso_csr | CSR_DONE;
if (cso_csr & CSR_IE)
    SET_INT (CSO);
if ((cso_unit.flags & UNIT_ATT) == 0)
    return SCPE_OK;
if (putc (cso_unit.buf, cso_unit.fileref) == EOF) {
    perror ("CSO I/O error");
    clearerr (cso_unit.fileref);
    return SCPE_IOERR;
    }
cso_unit.pos = cso_unit.pos + 1;
return SCPE_OK;
}

t_stat cso_reset (DEVICE *dptr)
{
cso_unit.buf = 0;
cso_csr = CSR_DONE;
CLR_INT (CSO);
sim_cancel (&cso_unit);                                 /* deactivate unit */
return SCPE_OK;
}

/* SYSD: SSC access mechanisms and devices

   - IPR space read/write routines
   - register space read/write routines
   - SSC local register read/write routines
   - SSC console storage UART
   - SSC timers
   - CMCTL local register read/write routines
*/

/* Read/write IPR register space

   These routines implement the SSC's response to IPR's which are
   sent off the CPU chip for processing.
*/

int32 ReadIPR (int32 rg)
{
int32 val;

switch (rg) {

    case MT_ICCS:                                       /* ICCS */
        val = iccs_rd ();
        break;

    case MT_CSRS:                                       /* CSRS */
        val = csrs_rd ();
        break;

    case MT_CSRD:                                       /* CSRD */
        val = csrd_rd ();
        break;

    case MT_CSTS:                                       /* CSTS */
        val = csts_rd ();
        break;

    case MT_CSTD:                                       /* CSTD */
        val = 0;
        break;

    case MT_RXCS:                                       /* RXCS */
        val = rxcs_rd ();
        break;

    case MT_RXDB:                                       /* RXDB */
        val = rxdb_rd ();
        break;

    case MT_TXCS:                                       /* TXCS */
        val = txcs_rd ();
        break;

    case MT_TXDB:                                       /* TXDB */
        val = 0;
        break;

    case MT_TODR:                                       /* TODR */
        val = todr_rd ();
        break;

    case MT_CADR:                                       /* CADR */
        val = CADR & 0xFF;
        break;

    case MT_MSER:                                       /* MSER */
        val = MSER & 0xFF;
        break;

    case MT_CONPC:                                      /* console PC */
        val = conpc;
        break;

    case MT_CONPSL:                                     /* console PSL */
        val = conpsl;
        break;

    case MT_SID:                                        /* SID */
        val = CVAX_SID | CVAX_UREV;
        break;

    default:
        ssc_bto = ssc_bto | SSCBTO_BTO;                 /* set BTO */
        val = 0;
        break;
        }

return val;
}

void WriteIPR (int32 rg, int32 val)
{
switch (rg) {

    case MT_ICCS:                                       /* ICCS */
        iccs_wr (val);
        break;

    case MT_TODR:                                       /* TODR */
        todr_wr (val);
        break;

    case MT_CSRS:                                       /* CSRS */
        csrs_wr (val);
        break;

    case MT_CSRD:                                       /* CSRD */
        break;

    case MT_CSTS:                                       /* CSTS */
        csts_wr (val);
        break;

    case MT_CSTD:                                       /* CSTD */
        cstd_wr (val);
        break;

    case MT_RXCS:                                       /* RXCS */
        rxcs_wr (val);
        break;

    case MT_RXDB:                                       /* RXDB */
        break;

    case MT_TXCS:                                       /* TXCS */
        txcs_wr (val);
        break;

    case MT_TXDB:                                       /* TXDB */
        txdb_wr (val);
        break;

    case MT_CADR:                                       /* CADR */
        CADR = (val & CADR_RW) | CADR_MBO;
        break;

    case MT_MSER:                                       /* MSER */
        MSER = MSER & MSER_HM;
        break;

    case MT_IORESET:                                    /* IORESET */
        ioreset_wr (val);
        break;

    case MT_SID:
    case MT_CONPC:
    case MT_CONPSL:                                     /* halt reg */
        RSVD_OPND_FAULT;

    default:
        ssc_bto = ssc_bto | SSCBTO_BTO;                 /* set BTO */
        break;
        }

return;
}

/* Read/write I/O register space

   These routines are the 'catch all' for address space map.  Any
   address that doesn't explicitly belong to memory, I/O, or ROM
   is given to these routines for processing.
*/

struct reglink {                                        /* register linkage */
    uint32      low;                                    /* low addr */
    uint32      high;                                   /* high addr */
    t_stat      (*read)(int32 pa);                      /* read routine */
    void        (*write)(int32 pa, int32 val, int32 lnt); /* write routine */
    };

struct reglink regtable[] = {
    { CQMAPBASE, CQMAPBASE+CQMAPSIZE, &cqmap_rd, &cqmap_wr },
    { ROMBASE, ROMBASE+ROMSIZE+ROMSIZE, &rom_rd, NULL },
    { NVRBASE, NVRBASE+NVRSIZE, &nvr_rd, &nvr_wr },
    { CMCTLBASE, CMCTLBASE+CMCTLSIZE, &cmctl_rd, &cmctl_wr },
    { SSCBASE, SSCBASE+SSCSIZE, &ssc_rd, &ssc_wr },
    { KABASE, KABASE+KASIZE, &ka_rd, &ka_wr },
    { CQBICBASE, CQBICBASE+CQBICSIZE, &cqbic_rd, &cqbic_wr },
    { CQIPCBASE, CQIPCBASE+CQIPCSIZE, &cqipc_rd, &cqipc_wr },
    { CQMBASE, CQMBASE+CQMSIZE, &cqmem_rd, &cqmem_wr },
    { CDGBASE, CDGBASE+CDGSIZE, &cdg_rd, &cdg_wr },
    { 0, 0, NULL, NULL }
    };

/* ReadReg - read register space

   Inputs:
        pa      =       physical address
        lnt     =       length (BWLQ) - ignored
   Output:
        longword of data
*/

int32 ReadReg (uint32 pa, int32 lnt)
{
struct reglink *p;

for (p = &regtable[0]; p->low != 0; p++) {
    if ((pa >= p->low) && (pa < p->high) && p->read)
        return p->read (pa);
    }
ssc_bto = ssc_bto | SSCBTO_BTO | SSCBTO_RWT;
MACH_CHECK (MCHK_READ);
return 0;
}

/* WriteReg - write register space

   Inputs:
        pa      =       physical address
        val     =       data to write, right justified in 32b longword
        lnt     =       length (BWLQ)
   Outputs:
        none
*/

void WriteReg (uint32 pa, int32 val, int32 lnt)
{
struct reglink *p;

for (p = &regtable[0]; p->low != 0; p++) {
    if ((pa >= p->low) && (pa < p->high) && p->write) {
        p->write (pa, val, lnt);  
        return;
        }
    }
ssc_bto = ssc_bto | SSCBTO_BTO | SSCBTO_RWT;
MACH_CHECK (MCHK_WRITE);
return;
}

/* CMCTL registers

   CMCTL00 - 15 configure memory banks 00 - 15.  Note that they are
   here merely to entertain the firmware; the actual configuration
   of memory is unaffected by the settings here.

   CMCTL16 - error status register

   CMCTL17 - control/diagnostic status register

   The CMCTL registers are cleared at power up.
*/

int32 cmctl_rd (int32 pa)
{
int32 rg = (pa - CMCTLBASE) >> 2;

switch (rg) {

    default:                                            /* config reg */
        return cmctl_reg[rg] & CMCNF_MASK;

    case 16:                                            /* err status */
        return cmctl_reg[rg];

    case 17:                                            /* csr */
        return cmctl_reg[rg] & CMCSR_MASK;

    case 18:                                            /* KA655X ext mem */
        if (MEMSIZE > MAXMEMSIZE)                       /* more than 128MB? */
            return ((int32) MEMSIZE);
        MACH_CHECK (MCHK_READ);
        }

return 0;
}

void cmctl_wr (int32 pa, int32 val, int32 lnt)
{
int32 i, rg = (pa - CMCTLBASE) >> 2;

if (lnt < L_LONG) {                                     /* LW write only */
    int32 sc = (pa & 3) << 3;                           /* shift data to */
    val = val << sc;                                    /* proper location */
    }
switch (rg) {

    default:                                            /* config reg */
        if (val & CMCNF_SRQ) {                          /* sig request? */
            int32 rg_g = rg & ~3;                       /* group of 4 */
            for (i = rg_g; i < (rg_g + 4); i++) {
                cmctl_reg[i] = cmctl_reg[i] & ~CMCNF_SIG;
                if (ADDR_IS_MEM (i * MEM_BANK))
                    cmctl_reg[i] = cmctl_reg[i] | MEM_SIG;
                }
            }
        cmctl_reg[rg] = (cmctl_reg[rg] & ~CMCNF_RW) | (val & CMCNF_RW);
        break;

    case 16:                                            /* err status */
        cmctl_reg[rg] = cmctl_reg[rg] & ~(val & CMERR_W1C);
        break;

    case 17:                                            /* csr */
        cmctl_reg[rg] = val & CMCSR_MASK;
        break;

    case 18:
        MACH_CHECK (MCHK_WRITE);
        }

return;
}

/* KA655 registers */

int32 ka_rd (int32 pa)
{
int32 rg = (pa - KABASE) >> 2;

switch (rg) {

    case 0:                                             /* CACR */
        return ka_cacr;

    case 1:                                             /* BDR */
        return ka_bdr;
        }

return 0;
}

void ka_wr (int32 pa, int32 val, int32 lnt)
{
int32 rg = (pa - KABASE) >> 2;

if ((rg == 0) && ((pa & 3) == 0)) {                     /* lo byte only */
    ka_cacr = (ka_cacr & ~(val & CACR_W1C)) | CACR_FIXED;
    ka_cacr = (ka_cacr & ~CACR_RW) | (val & CACR_RW);
    }
return;
}

int32 sysd_hlt_enb (void)
{
return ka_bdr & BDR_BRKENB;
}

/* Cache diagnostic space */

int32 cdg_rd (int32 pa)
{
int32 t, row = CDG_GETROW (pa);

t = cdg_dat[row];
ka_cacr = ka_cacr & ~CACR_DRO;                          /* clear diag */
ka_cacr = ka_cacr |
    (parity ((t >> 24) & 0xFF, 1) << (CACR_V_DPAR + 3)) |
    (parity ((t >> 16) & 0xFF, 0) << (CACR_V_DPAR + 2)) |
    (parity ((t >> 8) & 0xFF, 1) << (CACR_V_DPAR + 1)) |
    (parity (t & 0xFF, 0) << CACR_V_DPAR);
return t;
}

void cdg_wr (int32 pa, int32 val, int32 lnt)
{
int32 row = CDG_GETROW (pa);

if (lnt < L_LONG) {                                     /* byte or word? */
    int32 sc = (pa & 3) << 3;                           /* merge */
    int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
    int32 t = cdg_dat[row];
    val = ((val & mask) << sc) | (t & ~(mask << sc));
    }
cdg_dat[row] = val;                                     /* store data */
return;
}

int32 parity (int32 val, int32 odd)
{
for ( ; val != 0; val = val >> 1) {
    if (val & 1)
        odd = odd ^ 1;
    }
return odd;
}

/* SSC registers - byte/word merges done in WriteReg */

int32 ssc_rd (int32 pa)
{
int32 rg = (pa - SSCBASE) >> 2;

switch (rg) {

    case 0x00:                                          /* base reg */
        return ssc_base;

    case 0x04:                                          /* conf reg */
        return ssc_cnf;

    case 0x08:                                          /* bus timeout */
        return ssc_bto;

    case 0x0C:                                          /* output port */
        return ssc_otp & SSCOTP_MASK;

    case 0x1B:                                          /* TODR */
        return todr_rd ();

    case 0x1C:                                          /* CSRS */
        return csrs_rd ();

    case 0x1D:                                          /* CSRD */
        return csrd_rd ();

    case 0x1E:                                          /* CSTS */
        return csts_rd ();

    case 0x20:                                          /* RXCS */
        return rxcs_rd ();

    case 0x21:                                          /* RXDB */
        return rxdb_rd ();

    case 0x22:                                          /* TXCS */
        return txcs_rd ();

    case 0x40:                                          /* T0CSR */
        return tmr_csr[0];

    case 0x41:                                          /* T0INT */
        return tmr_tir_rd (0, FALSE);

    case 0x42:                                          /* T0NI */
        return tmr_tnir[0];

    case 0x43:                                          /* T0VEC */
        return tmr_tivr[0];

    case 0x44:                                          /* T1CSR */
        return tmr_csr[1];

    case 0x45:                                          /* T1INT */
        return tmr_tir_rd (1, FALSE);

    case 0x46:                                          /* T1NI */
        return tmr_tnir[1];

    case 0x47:                                          /* T1VEC */
        return tmr_tivr[1];

    case 0x4C:                                          /* ADS0M */
        return ssc_adsm[0];

    case 0x4D:                                          /* ADS0K */
        return ssc_adsk[0];

    case 0x50:                                          /* ADS1M */
        return ssc_adsm[1];

    case 0x51:                                          /* ADS1K */
        return ssc_adsk[1];
        }

return 0;
}

void ssc_wr (int32 pa, int32 val, int32 lnt)
{
int32 rg = (pa - SSCBASE) >> 2;

if (lnt < L_LONG) {                                     /* byte or word? */
    int32 sc = (pa & 3) << 3;                           /* merge */
    int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
    int32 t = ssc_rd (pa);
    val = ((val & mask) << sc) | (t & ~(mask << sc));
    }

switch (rg) {

    case 0x00:                                          /* base reg */
        ssc_base = (val & SSCBASE_RW) | SSCBASE_MBO;
        break;

    case 0x04:                                          /* conf reg */
        ssc_cnf = ssc_cnf & ~(val & SSCCNF_W1C);
        ssc_cnf = (ssc_cnf & ~SSCCNF_RW) | (val & SSCCNF_RW);
        break;

    case 0x08:                                          /* bus timeout */
        ssc_bto = ssc_bto & ~(val & SSCBTO_W1C);
        ssc_bto = (ssc_bto & ~SSCBTO_RW) | (val & SSCBTO_RW);
        break;

    case 0x0C:                                          /* output port */
        ssc_otp = val & SSCOTP_MASK;
        break;

    case 0x1B:                                          /* TODR */
        todr_wr (val);
        break;

    case 0x1C:                                          /* CSRS */
        csrs_wr (val);
        break;

    case 0x1E:                                          /* CSTS */
        csts_wr (val);
        break;

    case 0x1F:                                          /* CSTD */
        cstd_wr (val);
        break;

    case 0x20:                                          /* RXCS */
        rxcs_wr (val);
        break;

    case 0x22:                                          /* TXCS */
        txcs_wr (val);
        break;

    case 0x23:                                          /* TXDB */
        txdb_wr (val);
        break;

    case 0x40:                                          /* T0CSR */
        tmr_csr_wr (0, val);
        break;

    case 0x42:                                          /* T0NI */
        tmr_tnir[0] = val;
        break;

    case 0x43:                                          /* T0VEC */
        tmr_tivr[0] = val & TMR_VEC_MASK;
        break;

    case 0x44:                                          /* T1CSR */
        tmr_csr_wr (1, val);
        break;

    case 0x46:                                          /* T1NI */
        tmr_tnir[1] = val;
        break;

    case 0x47:                                          /* T1VEC */
        tmr_tivr[1] = val & TMR_VEC_MASK;
        break;

    case 0x4C:                                          /* ADS0M */
        ssc_adsm[0] = val & SSCADS_MASK;
        break;

    case 0x4D:                                          /* ADS0K */
        ssc_adsk[0] = val & SSCADS_MASK;
        break;

    case 0x50:                                          /* ADS1M */
        ssc_adsm[1] = val & SSCADS_MASK;
        break;

    case 0x51:                                          /* ADS1K */
        ssc_adsk[1] = val & SSCADS_MASK;
        break;
        }

return;
}

/* Programmable timers

   The SSC timers, which increment at 1Mhz, cannot be accurately
   simulated due to the overhead that would be required for 1M
   clock events per second.  Instead, a gross hack is used.  When
   a timer is started, the clock interval is inspected.

   if (int < 0 and small) then testing timer, count instructions.
        Small is determined by when the requested interval is less
        than the size of a 100hz system clock tick.
   if (int >= 0 or large) then counting a real interval, schedule
        clock events at 100Hz using calibrated line clock delay
        and when the remaining time value gets small enough, behave
        like the small case above.

   If the interval register is read, then its value between events
   is interpolated using the current instruction count versus the
   count when the most recent event started, the result is scaled
   to the calibrated system clock, unless the interval being timed
   is less than a calibrated system clock tick (or the calibrated 
   clock is running very slowly) at which time the result will be 
   the elapsed instruction count.

   The powerup TOY Test sometimes fails its tolerance test.  This was
   due to varying system load causing varying calibration values to be
   used at different times while referencing the TIR.  While timing long
   intervals, we now synchronize the stepping (and calibration) of the
   system tick with the opportunity to reference the value.  This gives
   precise tolerance measurement values (when interval timers are used
   to measure the system clock), regardless of other load issues on the
   host system which might cause varying values of the system clock's
   calibration factor.
*/

int32 tmr_tir_rd (int32 tmr, t_bool interp)
{
uint32 delta;

if (interp || (tmr_csr[tmr] & TMR_CSR_RUN)) {           /* interp, running? */
    delta = sim_grtime () - tmr_sav[tmr];               /* delta inst */
    if ((tmr_inc[tmr] == TMR_INC) &&                    /* scale large int */
        (tmr_poll > TMR_INC))
        delta = (uint32) ((((double) delta) * TMR_INC) / tmr_poll);
    if (delta >= tmr_inc[tmr])
        delta = tmr_inc[tmr] - 1;
    return tmr_tir[tmr] + delta;
    }
return tmr_tir[tmr];
}

void tmr_csr_wr (int32 tmr, int32 val)
{
if ((tmr < 0) || (tmr > 1))
    return;
if ((val & TMR_CSR_RUN) == 0) {                         /* clearing run? */
    sim_cancel (&sysd_unit[tmr]);                       /* cancel timer */
    if (tmr_csr[tmr] & TMR_CSR_RUN)                     /* run 1 -> 0? */
        tmr_tir[tmr] = tmr_tir_rd (tmr, TRUE);          /* update itr */
    }
tmr_csr[tmr] = tmr_csr[tmr] & ~(val & TMR_CSR_W1C);     /* W1C csr */
tmr_csr[tmr] = (tmr_csr[tmr] & ~TMR_CSR_RW) |           /* new r/w */
    (val & TMR_CSR_RW);
if (val & TMR_CSR_XFR)                                  /* xfr set? */
    tmr_tir[tmr] = tmr_tnir[tmr];
if (val & TMR_CSR_RUN)  {                               /* run? */
    if (val & TMR_CSR_XFR)                              /* new tir? */
        sim_cancel (&sysd_unit[tmr]);                   /* stop prev */
    if (!sim_is_active (&sysd_unit[tmr]))               /* not running? */
        tmr_sched (tmr);                                /* activate */
    }
else if (val & TMR_CSR_SGL) {                           /* single step? */
    tmr_incr (tmr, 1);                                  /* incr tmr */
    if (tmr_tir[tmr] == 0)                              /* if ovflo, */
        tmr_tir[tmr] = tmr_tnir[tmr];                   /* reload tir */
    }
if ((tmr_csr[tmr] & (TMR_CSR_DON | TMR_CSR_IE)) !=      /* update int */
    (TMR_CSR_DON | TMR_CSR_IE)) {
        if (tmr)
            CLR_INT (TMR1);
        else CLR_INT (TMR0);
        }
return;
}

/* Unit service */

t_stat tmr_svc (UNIT *uptr)
{
int32 tmr = uptr - sysd_dev.units;                      /* get timer # */

tmr_incr (tmr, tmr_inc[tmr]);                           /* incr timer */
return SCPE_OK;
}

/* Timer increment */

void tmr_incr (int32 tmr, uint32 inc)
{
uint32 new_tir = tmr_tir[tmr] + inc;                    /* add incr */

if (new_tir < tmr_tir[tmr]) {                           /* ovflo? */
    tmr_tir[tmr] = 0;                                   /* now 0 */
    if (tmr_csr[tmr] & TMR_CSR_DON)                     /* done? set err */
        tmr_csr[tmr] = tmr_csr[tmr] | TMR_CSR_ERR;
    else tmr_csr[tmr] = tmr_csr[tmr] | TMR_CSR_DON;     /* set done */
    if (tmr_csr[tmr] & TMR_CSR_STP)                     /* stop? */
        tmr_csr[tmr] = tmr_csr[tmr] & ~TMR_CSR_RUN;     /* clr run */
    if (tmr_csr[tmr] & TMR_CSR_RUN) {                   /* run? */
        tmr_tir[tmr] = tmr_tnir[tmr];                   /* reload */
        tmr_sched (tmr);                                /* reactivate */
        }
    if (tmr_csr[tmr] & TMR_CSR_IE) {                    /* set int req */
        if (tmr)
            SET_INT (TMR1);
        else SET_INT (TMR0);
        }
    }
else {
    tmr_tir[tmr] = new_tir;                             /* no, upd tir */
    if (tmr_csr[tmr] & TMR_CSR_RUN)                     /* still running? */
        tmr_sched (tmr);                                /* reactivate */
    }
return;
}

/* Timer scheduling */

void tmr_sched (int32 tmr)
{
int32 clk_time = sim_is_active (&clk_unit) - 1;
int32 tmr_time;

tmr_sav[tmr] = sim_grtime ();                           /* save intvl base */
if (tmr_tir[tmr] > (0xFFFFFFFFu - TMR_INC)) {           /* short interval? */
    tmr_inc[tmr] = (~tmr_tir[tmr] + 1);                 /* inc = interval */
    tmr_time = tmr_inc[tmr];
    }
else {
    tmr_inc[tmr] = TMR_INC;                             /* usec/interval */
    tmr_time = tmr_poll;
    }
if (tmr_time == 0)
    tmr_time = 1;
if ((tmr_inc[tmr] == TMR_INC) && (tmr_time > clk_time)) {

/* Align scheduled event to be identical to the event for the next clock
   tick.  This lets us always see a consistent calibrated value, both for
   this scheduling, AND for any query of the current timer register that
   may happen in tmr_tir_rd ().  This presumes that sim_activate will
   queue the interval timer behind the event for the clock tick. */

    tmr_inc[tmr] = (uint32) (((double) clk_time * TMR_INC) / tmr_poll);
    tmr_time = clk_time;
    }
sim_activate (&sysd_unit[tmr], tmr_time);
return;
}

int32 tmr0_inta (void)
{
return tmr_tivr[0];
}

int32 tmr1_inta (void)
{
return tmr_tivr[1];
}

/* Machine check */

int32 machine_check (int32 p1, int32 opc, int32 cc, int32 delta)
{
int32 i, st1, st2, p2, hsir, acc;

if (p1 & 0x80)                                          /* mref? set v/p */
    p1 = p1 + mchk_ref;
p2 = mchk_va + 4;                                       /* save vap */
for (i = hsir = 0; i < 16; i++) {                       /* find hsir */
    if ((SISR >> i) & 1)
        hsir = i;
    }
st1 = ((((uint32) opc) & 0xFF) << 24) |
    (hsir << 16) |
    ((CADR & 0xFF) << 8) |
    (MSER & 0xFF);
st2 = 0x00C07000 + (delta & 0xFF);
cc = intexc (SCB_MCHK, cc, 0, IE_SVE);                  /* take exception */
acc = ACC_MASK (KERN);                                  /* in kernel mode */
in_ie = 1;
SP = SP - 20;                                           /* push 5 words */
Write (SP, 16, L_LONG, WA);                             /* # bytes */
Write (SP + 4, p1, L_LONG, WA);                         /* mcheck type */
Write (SP + 8, p2, L_LONG, WA);                         /* address */
Write (SP + 12, st1, L_LONG, WA);                       /* state 1 */
Write (SP + 16, st2, L_LONG, WA);                       /* state 2 */
in_ie = 0;
return cc;
}

/* Console entry */

int32 con_halt (int32 code, int32 cc)
{
int32 temp;

conpc = PC;                                             /* save PC */
conpsl = ((PSL | cc) & 0xFFFF00FF) | CON_HLTINS;        /* PSL, param */
temp = (PSL >> PSL_V_CUR) & 0x7;                        /* get is'cur */
if (temp > 4)                                           /* invalid? */
    conpsl = conpsl | CON_BADPSL;
else STK[temp] = SP;                                    /* save stack */
if (mapen)                                              /* mapping on? */
    conpsl = conpsl | CON_MAPON;
mapen = 0;                                              /* turn off map */
SP = IS;                                                /* set SP from IS */
PSL = PSL_IS | PSL_IPL1F;                               /* PSL = 41F0000 */
JUMP (ROMBASE);                                         /* PC = 20040000 */
return 0;                                               /* new cc = 0 */
}

/* Bootstrap */

t_stat cpu_boot (int32 unitno, DEVICE *dptr)
{
extern t_stat load_cmd (int32 flag, char *cptr);
extern FILE *sim_log;
t_stat r;

PC = ROMBASE;
PSL = PSL_IS | PSL_IPL1F;
conpc = 0;
conpsl = PSL_IS | PSL_IPL1F | CON_PWRUP;
if (rom == NULL)
    return SCPE_IERR;
if (*rom == 0) {                                        /* no boot? */
    printf ("Loading boot code from ka655x.bin\n");
    if (sim_log)
        fprintf (sim_log, "Loading boot code from ka655x.bin\n");
    r = load_cmd (0, "-R ka655x.bin");
    if (r != SCPE_OK)
        return r;
    }
return SCPE_OK;
}

/* SYSD reset */

t_stat sysd_reset (DEVICE *dptr)
{
int32 i;

if (sim_switches & SWMASK ('P')) sysd_powerup ();       /* powerup? */
for (i = 0; i < 2; i++) {
    tmr_csr[i] = tmr_tnir[i] = tmr_tir[i] = 0;
    tmr_inc[i] = tmr_sav[i] = 0;
    sim_cancel (&sysd_unit[i]);
    }
csi_csr = 0;
csi_unit.buf = 0;
sim_cancel (&csi_unit);
CLR_INT (CSI);
cso_csr = CSR_DONE;
cso_unit.buf = 0;
sim_cancel (&cso_unit);
CLR_INT (CSO);
return SCPE_OK;
}

/* SYSD powerup */

t_stat sysd_powerup (void)
{
int32 i;

for (i = 0; i < (CMCTLSIZE >> 2); i++)
    cmctl_reg[i] = 0;
for (i = 0; i < 2; i++) {
    tmr_tivr[i] = 0;
    ssc_adsm[i] = ssc_adsk[i] = 0;
    }
ka_cacr = 0;
ssc_base = SSCBASE;
ssc_cnf = ssc_cnf & SSCCNF_BLO;
ssc_bto = 0;
ssc_otp = 0;
return SCPE_OK;
}