1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
/* sim_timer.c: simulator timer library
Copyright (c) 1993-2008, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
22-Sep-08 RMS Added "stability threshold" for idle routine
27-May-08 RMS Fixed bug in Linux idle routines (from Walter Mueller)
18-Jun-07 RMS Modified idle to exclude counted delays
22-Mar-07 RMS Added sim_rtcn_init_all
17-Oct-06 RMS Added idle support (based on work by Mark Pizzolato)
Added throttle support
16-Aug-05 RMS Fixed C++ declaration and cast problems
02-Jan-04 RMS Split out from SCP
This library includes the following routines:
sim_timer_init - initialize timing system
sim_rtc_init - initialize calibration
sim_rtc_calb - calibrate clock
sim_timer_init - initialize timing system
sim_idle - virtual machine idle
sim_os_msec - return elapsed time in msec
sim_os_sleep - sleep specified number of seconds
sim_os_ms_sleep - sleep specified number of milliseconds
The calibration, idle, and throttle routines are OS-independent; the _os_
routines are not.
*/
#include "sim_defs.h"
#include <ctype.h>
t_bool sim_idle_enab = FALSE; /* global flag */
static uint32 sim_idle_rate_ms = 0;
static uint32 sim_idle_stable = SIM_IDLE_STDFLT;
static uint32 sim_throt_ms_start = 0;
static uint32 sim_throt_ms_stop = 0;
static uint32 sim_throt_type = 0;
static uint32 sim_throt_val = 0;
static uint32 sim_throt_state = 0;
static int32 sim_throt_wait = 0;
extern int32 sim_interval, sim_switches;
extern FILE *sim_log;
extern UNIT *sim_clock_queue;
t_stat sim_throt_svc (UNIT *uptr);
UNIT sim_throt_unit = { UDATA (&sim_throt_svc, 0, 0) };
/* OS-dependent timer and clock routines */
/* VMS */
#if defined (VMS)
#if defined (__VAX)
#define sys$gettim SYS$GETTIM
#endif
#include <starlet.h>
#include <lib$routines.h>
#include <unistd.h>
const t_bool rtc_avail = TRUE;
uint32 sim_os_msec ()
{
uint32 quo, htod, tod[2];
int32 i;
sys$gettim (tod); /* time 0.1usec */
/* To convert to msec, must divide a 64b quantity by 10000. This is actually done
by dividing the 96b quantity 0'time by 10000, producing 64b of quotient, the
high 32b of which are discarded. This can probably be done by a clever multiply...
*/
quo = htod = 0;
for (i = 0; i < 64; i++) { /* 64b quo */
htod = (htod << 1) | ((tod[1] >> 31) & 1); /* shift divd */
tod[1] = (tod[1] << 1) | ((tod[0] >> 31) & 1);
tod[0] = tod[0] << 1;
quo = quo << 1; /* shift quo */
if (htod >= 10000) { /* divd work? */
htod = htod - 10000; /* subtract */
quo = quo | 1; /* set quo bit */
}
}
return quo;
}
void sim_os_sleep (unsigned int sec)
{
sleep (sec);
return;
}
uint32 sim_os_ms_sleep_init (void)
{
#if defined (__VAX)
return 10; /* VAX/VMS is 10ms */
#else
return 1; /* Alpha/VMS is 1ms */
#endif
}
uint32 sim_os_ms_sleep (unsigned int msec)
{
uint32 stime = sim_os_msec ();
uint32 qtime[2];
int32 nsfactor = -10000;
static int32 zero = 0;
lib$emul (&msec, &nsfactor, &zero, qtime);
sys$setimr (2, qtime, 0, 0);
sys$waitfr (2);
return sim_os_msec () - stime;
}
/* Win32 routines */
#elif defined (_WIN32)
#include <windows.h>
const t_bool rtc_avail = TRUE;
uint32 sim_os_msec ()
{
if (sim_idle_rate_ms)
return timeGetTime ();
else return GetTickCount ();
}
void sim_os_sleep (unsigned int sec)
{
Sleep (sec * 1000);
return;
}
void sim_timer_exit (void)
{
timeEndPeriod (sim_idle_rate_ms);
return;
}
uint32 sim_os_ms_sleep_init (void)
{
TIMECAPS timers;
if (timeGetDevCaps (&timers, sizeof (timers)) != TIMERR_NOERROR)
return 0;
if ((timers.wPeriodMin == 0) || (timers.wPeriodMin > SIM_IDLE_MAX))
return 0;
if (timeBeginPeriod (timers.wPeriodMin) != TIMERR_NOERROR)
return 0;
atexit (sim_timer_exit);
Sleep (1);
Sleep (1);
Sleep (1);
Sleep (1);
Sleep (1);
return timers.wPeriodMin; /* sim_idle_rate_ms */
}
uint32 sim_os_ms_sleep (unsigned int msec)
{
uint32 stime = sim_os_msec();
Sleep (msec);
return sim_os_msec () - stime;
}
/* OS/2 routines, from Bruce Ray */
#elif defined (__OS2__)
const t_bool rtc_avail = FALSE;
uint32 sim_os_msec ()
{
return 0;
}
void sim_os_sleep (unsigned int sec)
{
return;
}
uint32 sim_os_ms_sleep_init (void)
{
return FALSE;
}
uint32 sim_os_ms_sleep (unsigned int msec)
{
return 0;
}
/* Metrowerks CodeWarrior Macintosh routines, from Ben Supnik */
#elif defined (__MWERKS__) && defined (macintosh)
#include <Timer.h>
#include <Mactypes.h>
#include <sioux.h>
#include <unistd.h>
#include <siouxglobals.h>
#define NANOS_PER_MILLI 1000000
#define MILLIS_PER_SEC 1000
const t_bool rtc_avail = TRUE;
uint32 sim_os_msec (void)
{
unsigned long long micros;
UnsignedWide macMicros;
unsigned long millis;
Microseconds (&macMicros);
micros = *((unsigned long long *) &macMicros);
millis = micros / 1000LL;
return (uint32) millis;
}
void sim_os_sleep (unsigned int sec)
{
sleep (sec);
return;
}
uint32 sim_os_ms_sleep_init (void)
{
return 1;
}
uint32 sim_os_ms_sleep (unsigned int milliseconds)
{
uint32 stime = sim_os_msec ();
struct timespec treq;
treq.tv_sec = milliseconds / MILLIS_PER_SEC;
treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI;
(void) nanosleep (&treq, NULL);
return sim_os_msec () - stime;
}
#else
/* UNIX routines */
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
#define NANOS_PER_MILLI 1000000
#define MILLIS_PER_SEC 1000
#define sleep1Samples 100
const t_bool rtc_avail = TRUE;
uint32 sim_os_msec ()
{
struct timeval cur;
struct timezone foo;
uint32 msec;
gettimeofday (&cur, &foo);
msec = (((uint32) cur.tv_sec) * 1000) + (((uint32) cur.tv_usec) / 1000);
return msec;
}
void sim_os_sleep (unsigned int sec)
{
sleep (sec);
return;
}
uint32 sim_os_ms_sleep_init (void)
{
#if defined (_POSIX_SOURCE) /* POSIX-compliant */
struct timespec treq;
uint32 msec;
if (clock_getres (CLOCK_REALTIME, &treq) != 0)
return 0;
msec = (treq.tv_nsec + (NANOS_PER_MILLI - 1)) / NANOS_PER_MILLI;
if (msec > SIM_IDLE_MAX) return 0;
return msec;
#else /* others */
uint32 i, t1, t2, tot, tim;
for (i = 0, tot = 0; i < sleep1Samples; i++) {
t1 = sim_os_msec ();
sim_os_ms_sleep (1);
t2 = sim_os_msec ();
tot += (t2 - t1);
}
tim = (tot + (sleep1Samples - 1)) / sleep1Samples;
if (tim == 0)
tim = 1;
else if (tim > SIM_IDLE_MAX)
tim = 0;
return tim;
#endif
}
uint32 sim_os_ms_sleep (unsigned int milliseconds)
{
uint32 stime = sim_os_msec ();
struct timespec treq;
treq.tv_sec = milliseconds / MILLIS_PER_SEC;
treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI;
(void) nanosleep (&treq, NULL);
return sim_os_msec () - stime;
}
#endif
/* OS independent clock calibration package */
static int32 rtc_ticks[SIM_NTIMERS] = { 0 }; /* ticks */
static int32 rtc_hz[SIM_NTIMERS] = { 0 }; /* tick rate */
static uint32 rtc_rtime[SIM_NTIMERS] = { 0 }; /* real time */
static uint32 rtc_vtime[SIM_NTIMERS] = { 0 }; /* virtual time */
static uint32 rtc_nxintv[SIM_NTIMERS] = { 0 }; /* next interval */
static int32 rtc_based[SIM_NTIMERS] = { 0 }; /* base delay */
static int32 rtc_currd[SIM_NTIMERS] = { 0 }; /* current delay */
static int32 rtc_initd[SIM_NTIMERS] = { 0 }; /* initial delay */
static uint32 rtc_elapsed[SIM_NTIMERS] = { 0 }; /* sec since init */
void sim_rtcn_init_all (void)
{
uint32 i;
for (i = 0; i < SIM_NTIMERS; i++) {
if (rtc_initd[i] != 0) sim_rtcn_init (rtc_initd[i], i);
}
return;
}
int32 sim_rtcn_init (int32 time, int32 tmr)
{
if (time == 0)
time = 1;
if ((tmr < 0) || (tmr >= SIM_NTIMERS))
return time;
rtc_rtime[tmr] = sim_os_msec ();
rtc_vtime[tmr] = rtc_rtime[tmr];
rtc_nxintv[tmr] = 1000;
rtc_ticks[tmr] = 0;
rtc_hz[tmr] = 0;
rtc_based[tmr] = time;
rtc_currd[tmr] = time;
rtc_initd[tmr] = time;
rtc_elapsed[tmr] = 0;
return time;
}
int32 sim_rtcn_calb (int32 ticksper, int32 tmr)
{
uint32 new_rtime, delta_rtime;
int32 delta_vtime;
if ((tmr < 0) || (tmr >= SIM_NTIMERS))
return 10000;
rtc_hz[tmr] = ticksper;
rtc_ticks[tmr] = rtc_ticks[tmr] + 1; /* count ticks */
if (rtc_ticks[tmr] < ticksper) /* 1 sec yet? */
return rtc_currd[tmr];
rtc_ticks[tmr] = 0; /* reset ticks */
rtc_elapsed[tmr] = rtc_elapsed[tmr] + 1; /* count sec */
if (!rtc_avail) /* no timer? */
return rtc_currd[tmr];
new_rtime = sim_os_msec (); /* wall time */
if (new_rtime < rtc_rtime[tmr]) { /* time running backwards? */
rtc_rtime[tmr] = new_rtime; /* reset wall time */
return rtc_currd[tmr]; /* can't calibrate */
}
delta_rtime = new_rtime - rtc_rtime[tmr]; /* elapsed wtime */
rtc_rtime[tmr] = new_rtime; /* adv wall time */
rtc_vtime[tmr] = rtc_vtime[tmr] + 1000; /* adv sim time */
if (delta_rtime > 30000) /* gap too big? */
return rtc_initd[tmr]; /* can't calibr */
if (delta_rtime == 0) /* gap too small? */
rtc_based[tmr] = rtc_based[tmr] * ticksper; /* slew wide */
else rtc_based[tmr] = (int32) (((double) rtc_based[tmr] * (double) rtc_nxintv[tmr]) /
((double) delta_rtime)); /* new base rate */
delta_vtime = rtc_vtime[tmr] - rtc_rtime[tmr]; /* gap */
if (delta_vtime > SIM_TMAX) /* limit gap */
delta_vtime = SIM_TMAX;
else if (delta_vtime < -SIM_TMAX)
delta_vtime = -SIM_TMAX;
rtc_nxintv[tmr] = 1000 + delta_vtime; /* next wtime */
rtc_currd[tmr] = (int32) (((double) rtc_based[tmr] * (double) rtc_nxintv[tmr]) /
1000.0); /* next delay */
if (rtc_based[tmr] <= 0) /* never negative or zero! */
rtc_based[tmr] = 1;
if (rtc_currd[tmr] <= 0) /* never negative or zero! */
rtc_currd[tmr] = 1;
return rtc_currd[tmr];
}
/* Prior interfaces - default to timer 0 */
int32 sim_rtc_init (int32 time)
{
return sim_rtcn_init (time, 0);
}
int32 sim_rtc_calb (int32 ticksper)
{
return sim_rtcn_calb (ticksper, 0);
}
/* sim_timer_init - get minimum sleep time available on this host */
t_bool sim_timer_init (void)
{
sim_idle_enab = FALSE; /* init idle off */
sim_idle_rate_ms = sim_os_ms_sleep_init (); /* get OS timer rate */
return (sim_idle_rate_ms != 0);
}
/* sim_idle - idle simulator until next event or for specified interval
Inputs:
tmr = calibrated timer to use
Must solve the linear equation
ms_to_wait = w * ms_per_wait
Or
w = ms_to_wait / ms_per_wait
*/
t_bool sim_idle (uint32 tmr, t_bool sin_cyc)
{
uint32 cyc_ms, w_ms, w_idle, act_ms;
int32 act_cyc;
if ((sim_clock_queue == NULL) || /* clock queue empty? */
((sim_clock_queue->flags & UNIT_IDLE) == 0) || /* event not idle-able? */
(rtc_elapsed[tmr] < sim_idle_stable)) { /* timer not stable? */
if (sin_cyc)
sim_interval = sim_interval - 1;
return FALSE;
}
cyc_ms = (rtc_currd[tmr] * rtc_hz[tmr]) / 1000; /* cycles per msec */
if ((sim_idle_rate_ms == 0) || (cyc_ms == 0)) { /* not possible? */
if (sin_cyc)
sim_interval = sim_interval - 1;
return FALSE;
}
w_ms = (uint32) sim_interval / cyc_ms; /* ms to wait */
w_idle = w_ms / sim_idle_rate_ms; /* intervals to wait */
if (w_idle == 0) { /* none? */
if (sin_cyc)
sim_interval = sim_interval - 1;
return FALSE;
}
act_ms = sim_os_ms_sleep (w_idle); /* wait */
act_cyc = act_ms * cyc_ms;
if (sim_interval > act_cyc)
sim_interval = sim_interval - act_cyc;
else sim_interval = 1;
return TRUE;
}
/* Set idling - implicitly disables throttling */
t_stat sim_set_idle (UNIT *uptr, int32 val, char *cptr, void *desc)
{
t_stat r;
uint32 v;
if (sim_idle_rate_ms == 0)
return SCPE_NOFNC;
if ((val != 0) && (sim_idle_rate_ms > (uint32) val))
return SCPE_NOFNC;
if (cptr) {
v = (uint32) get_uint (cptr, 10, SIM_IDLE_STMAX, &r);
if ((r != SCPE_OK) || (v < SIM_IDLE_STMIN))
return SCPE_ARG;
sim_idle_stable = v;
}
sim_idle_enab = TRUE;
if (sim_throt_type != SIM_THROT_NONE) {
sim_set_throt (0, NULL);
printf ("Throttling disabled\n");
if (sim_log)
fprintf (sim_log, "Throttling disabled\n");
}
return SCPE_OK;
}
/* Clear idling */
t_stat sim_clr_idle (UNIT *uptr, int32 val, char *cptr, void *desc)
{
sim_idle_enab = FALSE;
return SCPE_OK;
}
/* Show idling */
t_stat sim_show_idle (FILE *st, UNIT *uptr, int32 val, void *desc)
{
if (sim_idle_enab)
fprintf (st, "idle enabled, stability wait = %ds", sim_idle_stable);
else fputs ("idle disabled", st);
return SCPE_OK;
}
/* Throttling package */
t_stat sim_set_throt (int32 arg, char *cptr)
{
char *tptr, c;
t_value val;
if (arg == 0) {
if ((cptr != 0) && (*cptr != 0))
return SCPE_ARG;
sim_throt_type = SIM_THROT_NONE;
sim_throt_cancel ();
}
else if (sim_idle_rate_ms == 0)
return SCPE_NOFNC;
else {
val = strtotv (cptr, &tptr, 10);
if (cptr == tptr)
return SCPE_ARG;
c = toupper (*tptr++);
if (*tptr != 0)
return SCPE_ARG;
if (c == 'M')
sim_throt_type = SIM_THROT_MCYC;
else if (c == 'K')
sim_throt_type = SIM_THROT_KCYC;
else if ((c == '%') && (val > 0) && (val < 100))
sim_throt_type = SIM_THROT_PCT;
else return SCPE_ARG;
if (sim_idle_enab) {
printf ("Idling disabled\n");
if (sim_log)
fprintf (sim_log, "Idling disabled\n");
sim_clr_idle (NULL, 0, NULL, NULL);
}
sim_throt_val = (uint32) val;
}
return SCPE_OK;
}
t_stat sim_show_throt (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, char *cptr)
{
if (sim_idle_rate_ms == 0)
fprintf (st, "Throttling not available\n");
else {
switch (sim_throt_type) {
case SIM_THROT_MCYC:
fprintf (st, "Throttle = %d megacycles\n", sim_throt_val);
break;
case SIM_THROT_KCYC:
fprintf (st, "Throttle = %d kilocycles\n", sim_throt_val);
break;
case SIM_THROT_PCT:
fprintf (st, "Throttle = %d%%\n", sim_throt_val);
break;
default:
fprintf (st, "Throttling disabled\n");
break;
}
if (sim_switches & SWMASK ('D')) {
fprintf (st, "Wait rate = %d ms\n", sim_idle_rate_ms);
if (sim_throt_type != 0)
fprintf (st, "Throttle interval = %d cycles\n", sim_throt_wait);
}
}
return SCPE_OK;
}
void sim_throt_sched (void)
{
sim_throt_state = 0;
if (sim_throt_type)
sim_activate (&sim_throt_unit, SIM_THROT_WINIT);
return;
}
void sim_throt_cancel (void)
{
sim_cancel (&sim_throt_unit);
}
/* Throttle service
Throttle service has three distinct states
0 take initial measurement
1 take final measurement, calculate wait values
2 periodic waits to slow down the CPU
*/
t_stat sim_throt_svc (UNIT *uptr)
{
uint32 delta_ms;
double a_cps, d_cps;
switch (sim_throt_state) {
case 0: /* take initial reading */
sim_throt_ms_start = sim_os_msec ();
sim_throt_wait = SIM_THROT_WST;
sim_throt_state++; /* next state */
break; /* reschedule */
case 1: /* take final reading */
sim_throt_ms_stop = sim_os_msec ();
delta_ms = sim_throt_ms_stop - sim_throt_ms_start;
if (delta_ms < SIM_THROT_MSMIN) { /* not enough time? */
if (sim_throt_wait >= 100000000) { /* too many inst? */
sim_throt_state = 0; /* fails in 32b! */
return SCPE_OK;
}
sim_throt_wait = sim_throt_wait * SIM_THROT_WMUL;
sim_throt_ms_start = sim_throt_ms_stop;
}
else { /* long enough */
a_cps = ((double) sim_throt_wait) * 1000.0 / (double) delta_ms;
if (sim_throt_type == SIM_THROT_MCYC) /* calc desired cps */
d_cps = (double) sim_throt_val * 1000000.0;
else if (sim_throt_type == SIM_THROT_KCYC)
d_cps = (double) sim_throt_val * 1000.0;
else d_cps = (a_cps * ((double) sim_throt_val)) / 100.0;
if (d_cps >= a_cps) {
sim_throt_state = 0;
return SCPE_OK;
}
sim_throt_wait = (int32) /* time between waits */
((a_cps * d_cps * ((double) sim_idle_rate_ms)) /
(1000.0 * (a_cps - d_cps)));
if (sim_throt_wait < SIM_THROT_WMIN) { /* not long enough? */
sim_throt_state = 0;
return SCPE_OK;
}
sim_throt_state++;
// fprintf (stderr, "Throttle values a_cps = %f, d_cps = %f, wait = %d\n",
// a_cps, d_cps, sim_throt_wait);
}
break;
case 2: /* throttling */
sim_os_ms_sleep (1);
break;
}
sim_activate (uptr, sim_throt_wait); /* reschedule */
return SCPE_OK;
}
|