File: lgp_cpu.c

package info (click to toggle)
simh 3.8.1-6.3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,672 kB
  • sloc: ansic: 209,820; makefile: 326
file content (768 lines) | stat: -rw-r--r-- 28,915 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
/* lgp_cpu.c: LGP CPU simulator

   Copyright (c) 2004-2008, Robert M. Supnik

   Permission is hereby granted, free of charge, to any person obtaining a
   copy of this software and associated documentation files (the "Software"),
   to deal in the Software without restriction, including without limitation
   the rights to use, copy, modify, merge, publish, distribute, sublicense,
   and/or sell copies of the Software, and to permit persons to whom the
   Software is furnished to do so, subject to the following conditions:

   The above copyright notice and this permission notice shall be included in
   all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
   ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
   IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

   Except as contained in this notice, the name of Robert M Supnik shall not be
   used in advertising or otherwise to promote the sale, use or other dealings
   in this Software without prior written authorization from Robert M Supnik.

   cpu          LGP-30 [LGP-21] CPU

   22-Sep-05    RMS     Fixed declarations (from Sterling Garwood)
   04-Sep-05    RMS     Fixed missing returns (found by Peter Schorn)
   04-Jan-05    RMS     Modified VM pointer setup

   The system state for the LGP-30 [LGP-21] is:

   A<0:31>              accumulator
   C<0:11>              counter (PC)
   OVF                  overflow flag [LGP-21 only]

   The LGP-30 [LGP-21] has just one instruction format:

                        1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |S|                     |opcode |   |    operand address    |   | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    LGP-30 instructions:

    <0,12:15>           operation

    0                   stop
    1                   A <- M[ea]
    2                   M[ea]<addr> <- A<addr>
    3                   M[ea]<addr> <- C + 1
    4                   input
    5                   A <- A / M[ea]
    6                   A <- A * M[ea], low result
    7                   A <- A * M[ea], high result
    8                   output
    9                   A <- A & M[ea]
    A                   C <- ea
    B                   C <- ea if A < 0
    -B                  C <- ea if (A < 0) || T-switch set
    C                   M[ea] <- A
    D                   M[ea] <- A, A <- 0
    E                   A <- A + M[ea]
    F                   A <- A - M[ea]

    LGP-21 instructions:

    <0,12:15>           operation

    0                   stop; sense and skip
    -0                  stop; sense overflow and skip
    1                   A <- M[ea]
    2                   M[ea]<addr> <- A<addr>
    3                   M[ea]<addr> <- C + 1
    4                   6b input
    -4                  4b input
    5                   A <- A / M[ea]
    6                   A <- A * M[ea], low result
    7                   A <- A * M[ea], high result
    8                   6b output
    -8                  4b output
    9                   A <- A & M[ea]
    A                   C <- ea
    B                   C <- ea if A < 0
    -B                  C <- ea if (A < 0) || T-switch set
    C                   M[ea] <- A
    D                   M[ea] <- A, A <- 0
    E                   A <- A + M[ea]
    F                   A <- A - M[ea]

    The LGP-30 [LGP-21] has 4096 32b words of memory.  The low order
    bit is always read and stored as 0.  The LGP-30 uses a drum for
    memory, with 64 tracks of 64 words.  The LGP-21 uses a disk for
    memory, with 32 tracks of 128 words.

   This routine is the instruction decode routine for the LGP-30
   [LGP-21].  It is called from the simulator control program to
   execute instructions in simulated memory, starting at the simulated
   PC.  It runs until 'reason' is set non-zero.

   General notes:

   1. Reasons to stop.  The simulator can be stopped by:

        STOP instruction
        breakpoint encountered
        overflow [LGP-30]
        I/O error in I/O simulator

   2. Interrupts.  There are no interrupts.

   3. Non-existent memory.  All of memory always exists.

   4. Adding I/O devices.  The LGP-30 could not support additional
      I/O devices.  The LGP-21 could but none are known.
*/

#include "lgp_defs.h"

#define PCQ_SIZE        64                              /* must be 2**n */
#define PCQ_MASK        (PCQ_SIZE - 1)
#define PCQ_ENTRY       pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = (PC - 1) & AMASK;
#define M16             0xFFFF
#define M32             0xFFFFFFFF
#define NEG(x)          ((~(x) + 1) & DMASK)
#define ABS(x)          (((x) & SIGN)? NEG (x): (x))

uint32 M[MEMSIZE] = { 0 };                              /* memory */
uint32 PC = 0;                                          /* counter */
uint32 A = 0;                                           /* accumulator */
uint32 IR = 0;                                          /* instr register */
uint32 OVF = 0;                                         /* overflow indicator */
uint32 t_switch = 0;                                    /* transfer switch */
uint32 bp32 = 0;                                        /* BP32 switch */
uint32 bp16 = 0;                                        /* BP16 switch */
uint32 bp8 = 0;                                         /* BP8 switch */
uint32 bp4 = 0;                                         /* BP4 switch */
uint32 inp_strt = 0;                                    /* input started */
uint32 inp_done = 0;                                    /* input done */
uint32 out_strt = 0;                                    /* output started */
uint32 out_done = 0;                                    /* output done */
uint32 lgp21_sov = 0;                                   /* LGP-21 sense pending */
int32 delay = 0;
int16 pcq[PCQ_SIZE] = { 0 };                            /* PC queue */
int32 pcq_p = 0;                                        /* PC queue ptr */
REG *pcq_r = NULL;                                      /* PC queue reg ptr */

extern int32 sim_interval;
extern int32 sim_int_char;
extern uint32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
extern int32 sim_step;

t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_model (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_show_model (FILE *st, UNIT *uptr, int32 val, void *desc);
t_stat cpu_set_30opt (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_30opt_i (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_30opt_o (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_fill (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_exec (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_one_inst (uint32 opc, uint32 ir);
uint32 Mul64 (uint32 a, uint32 b, uint32 *low);
t_bool Div32 (uint32 dvd, uint32 dvr, uint32 *q);
uint32 I_delay (uint32 opc, uint32 ea, uint32 op);
uint32 shift_in (uint32 a, uint32 dat, uint32 sh4);

extern t_stat op_p (uint32 dev, uint32 ch);
extern t_stat op_i (uint32 dev, uint32 ch, uint32 sh4);
extern void lgp_vm_init (void);

/* CPU data structures

   cpu_dev      CPU device descriptor
   cpu_unit     CPU unit descriptor
   cpu_reg      CPU register list
   cpu_mod      CPU modifiers list
*/

UNIT cpu_unit = { UDATA (NULL, UNIT_FIX+UNIT_IN4B+UNIT_TTSS_D, MEMSIZE) };

REG cpu_reg[] = {
    { DRDATA (C, PC, 12), REG_VMAD },
    { HRDATA (A, A, 32), REG_VMIO },
    { HRDATA (IR, IR, 32), REG_VMIO },
    { FLDATA (OVF, OVF, 0) },
    { FLDATA (TSW, t_switch, 0) },
    { FLDATA (BP32, bp32, 0) },
    { FLDATA (BP16, bp16, 0) },
    { FLDATA (BP8, bp8, 0) },
    { FLDATA (BP4, bp4, 0) },
    { FLDATA (INPST, inp_strt, 0) },
    { FLDATA (INPDN, inp_done, 0) },
    { FLDATA (OUTST, out_strt, 0) },
    { FLDATA (OUTDN, out_done, 0) },
    { DRDATA (DELAY, delay, 7) },
    { BRDATA (CQ, pcq, 16, 12, PCQ_SIZE), REG_RO + REG_CIRC },
    { HRDATA (CQP, pcq_p, 6), REG_HRO },
    { HRDATA (WRU, sim_int_char, 8) },
    { NULL }
    };

MTAB cpu_mod[] = {
    { UNIT_LGP21, UNIT_LGP21, "LGP-21", "LGP21", &cpu_set_model, &cpu_show_model },
    { UNIT_LGP21, 0,          "LGP-30", "LGP30", &cpu_set_model, &cpu_show_model },
    { UNIT_TTSS_D, UNIT_TTSS_D, 0, "TRACK" },
    { UNIT_TTSS_D, 0,           0, "NORMAL" },
    { UNIT_LGPH_D, UNIT_LGPH_D, 0, "LGPHEX" },
    { UNIT_LGPH_D, 0,           0, "STANDARDHEX" },
    { UNIT_MANI, UNIT_MANI, NULL, "MANUAL" },
    { UNIT_MANI, 0,         NULL, "TAPE" },
    { UNIT_IN4B, UNIT_IN4B, NULL, "4B", &cpu_set_30opt },
    { UNIT_IN4B, 0,         NULL, "6B", &cpu_set_30opt },
    { MTAB_XTD|MTAB_VDV, 0, NULL, "INPUT", &cpu_set_30opt_i },
    { MTAB_XTD|MTAB_VDV, 0, NULL, "OUTPUT", &cpu_set_30opt_o },
    { MTAB_XTD|MTAB_VDV, 0, NULL, "EXECUTE", &cpu_set_exec },
    { MTAB_XTD|MTAB_VDV, 0, NULL, "FILL", &cpu_set_fill },
    { 0 }
    };

DEVICE cpu_dev = {
    "CPU", &cpu_unit, cpu_reg, cpu_mod,
    1, 10, 12, 1, 16, 32,
    &cpu_ex, &cpu_dep, &cpu_reset,
    NULL, NULL, NULL
    };

/* Timing tables */

/* Optimization minima and maxima
     Z   B   Y   R   I   D   N   M   P   E   U   T   H   C   A   S */

static const int32 min_30[16] = {
     2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2
     };
static const int32 max_30[16] = {
     7,  7,  7,  7,  7,  5,  8,  6,  7,  7,  0,  0,  7,  7,  7,  7
     };
static const int32 min_21[16] = {
     2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2
     };
static const int32 max_21[16] = {
     0, 16, 16, 16,  0, 58, 81, 79,  0, 16,  0,  0, 16, 16, 16, 16
     };

static const uint32 log_to_phys_30[NSC_30] = {          /* drum interlace chart */
    0, 57, 50, 43, 36, 29, 22, 15, 8 ,
    1, 58, 51, 44, 37, 30, 23, 16, 9 ,
    2, 59, 52, 45, 38, 31, 24, 17, 10,
    3, 60, 53, 46, 39, 32, 25, 18, 11,
    4, 61, 54, 47, 40, 33, 26, 19, 12,
    5, 62, 55, 48, 41, 32, 27, 20, 13,
    6, 63, 56, 49, 42, 33, 28, 21, 14,
    7
    };

static const uint32 log_to_phys_21[NSC_21] = {          /* disk interlace chart */
    0, 64, 57, 121, 50, 114, 43, 107, 36, 100, 29, 93, 22, 86, 15, 79,  8, 72,
    1, 65, 58, 122, 51, 115, 44, 108, 37, 101, 30, 94, 23, 87, 16, 80,  9, 73,
    2, 66, 59, 123, 52, 116, 45, 109, 38, 102, 31, 95, 24, 88, 17, 81, 10, 74,
    3, 67, 60, 124, 53, 117, 46, 110, 39, 103, 32, 96, 25, 89, 18, 82, 11, 75,
    4, 68, 61, 125, 54, 118, 47, 111, 40, 104, 33, 97, 26, 90, 19, 83, 12, 76,
    5, 69, 62, 126, 55, 119, 48, 112, 41, 105, 34, 98, 27, 91, 20, 84, 12, 77,
    6, 70, 63, 127, 56, 120, 49, 113, 42, 106, 35, 99, 28, 92, 21, 85, 13, 78,
    7, 71
    };

t_stat sim_instr (void)
{
t_stat r = 0;
uint32 oPC;

/* Restore register state */

PC = PC & AMASK;                                        /* mask PC */
sim_cancel_step ();                                     /* defang SCP step */
if (lgp21_sov) {                                        /* stop sense pending? */
    lgp21_sov = 0;
    if (!OVF)                                           /* ovf off? skip */
        PC = (PC + 1) & AMASK;
    else OVF = 0;                                       /* on? reset */
    }

/* Main instruction fetch/decode loop */

do {
    if (sim_interval <= 0) {                            /* check clock queue */
        if (r = sim_process_event ())
            break;
        }

    if (delay > 0) {                                    /* delay to next instr */
        delay = delay - 1;                              /* count down delay */
        sim_interval = sim_interval - 1;
        continue;                                       /* skip execution */
        }

    if (sim_brk_summ &&                                 /* breakpoint? */
        sim_brk_test (PC, SWMASK ('E'))) {
        r = STOP_IBKPT;                                 /* stop simulation */
        break;
        }

    IR = Read (oPC = PC);                               /* get instruction */
    PC = (PC + 1) & AMASK;                              /* increment PC */
    sim_interval = sim_interval - 1;

    if (r = cpu_one_inst (oPC, IR)) {                   /* one instr; error? */
        if (r == STOP_STALL) {                          /* stall? */
            PC = oPC;                                   /* back up PC */
            delay = r = 0;                              /* no delay */
            }
        else break;
        }

    if (sim_step && (--sim_step <= 0))                  /* do step count */
        r = SCPE_STOP;

    } while (r == 0);                                   /* loop until halted */
pcq_r->qptr = pcq_p;                                    /* update pc q ptr */
return r;
}

/* Execute one instruction */

t_stat cpu_one_inst (uint32 opc, uint32 ir)
{
uint32 ea, op, dat, res, dev, sh4, ch;
t_bool ovf_this_cycle = FALSE;
t_stat reason = 0;

op = I_GETOP (ir);                                      /* opcode */
ea = I_GETEA (ir);                                      /* address */
switch (op) {                                           /* case on opcode */

/* Loads, stores, transfers instructions */

    case OP_B:                                          /* bring */
        A = Read (ea);                                  /* A <- M[ea] */
        delay = I_delay (opc, ea, op);
        break;

    case OP_H:                                          /* hold */
        Write (ea, A);                                  /* M[ea] <- A */
        delay = I_delay (opc, ea, op);
        break;

    case OP_C:                                          /* clear */
        Write (ea, A);                                  /* M[ea] <- A */
        A = 0;                                          /* A <- 0 */
        delay = I_delay (opc, ea, op);
        break;

    case OP_Y:                                          /* store address */
        dat = Read (ea);                                /* get operand */
        dat = (dat & ~I_EA) | (A & I_EA);               /* merge address */
        Write (ea, dat);
        delay = I_delay (opc, ea, op);
        break;

    case OP_R:                                          /* return address */
        dat = Read (ea);                                /* get operand */
        dat = (dat & ~I_EA) | (((PC + 1) & AMASK) << I_V_EA);
        Write (ea, dat);
        delay = I_delay (opc, ea, op);
        break;

    case OP_U:                                          /* uncond transfer */
        PCQ_ENTRY;
        PC = ea;                                        /* transfer */
        delay = I_delay (opc, ea, op);
        break;

    case OP_T:                                          /* conditional transfer */
        if ((A & SIGN) ||                               /* A < 0 or */
            ((ir & SIGN) && t_switch)) {                /* -T and Tswitch set? */
            PCQ_ENTRY;
            PC = ea;                                    /* transfer */
            }
        delay = I_delay (opc, ea, op);
        break;

/* Arithmetic and logical instructions */

    case OP_A:                                          /* add */
        dat = Read (ea);                                /* get operand */
        res = (A + dat) & DMASK;                        /* add */
        if ((~A ^ dat) & (dat ^ res) & SIGN)            /* calc overflow */
            ovf_this_cycle = TRUE;
        A = res;                                        /* save result */
        delay = I_delay (opc, ea, op);
        break;

    case OP_S:                                          /* sub */
        dat = Read (ea);                                /* get operand */
        res = (A - dat) & DMASK;                        /* subtract */
        if ((A ^ dat) & (~dat ^ res) & SIGN)            /* calc overflow */
            ovf_this_cycle = TRUE;
        A = res;
        delay = I_delay (opc, ea, op);
        break;

    case OP_M:                                          /* multiply high */
        dat = Read (ea);                                /* get operand */
        A = (Mul64 (A, dat, NULL) << 1) & DMASK;        /* multiply */
        delay = I_delay (opc, ea, op);
        break;

    case OP_N:                                          /* multiply low */
        dat = Read (ea);                                /* get operand */
        Mul64 (A, dat, &res);                           /* multiply */
        A = res;                                        /* keep low result */
        delay = I_delay (opc, ea, op);                  /* total delay */
        break;

    case OP_D:                                          /* divide */
        dat = Read (ea);                                /* get operand */
        if (Div32 (A, dat, &A))                         /* divide; overflow? */
            ovf_this_cycle = TRUE;
        delay = I_delay (opc, ea, op);
        break;

    case OP_E:                                          /* extract */
        dat = Read (ea);                                /* get operand */
        A = A & dat;                                    /* and */
        delay = I_delay (opc, ea, op);
        break;

/* IO instructions */

    case OP_P:                                          /* output */
        if (Q_LGP21) {                                  /* LGP-21 */
            ch = A >> 26;                               /* char, 6b */
            if (ir & SIGN)                              /* 4b? convert */
                ch = (ch & 0x3C) | 2;
            dev = I_GETTK (ir);                         /* device select */
            }
        else {                                          /* LGP-30 */
            ch = I_GETTK (ir);                          /* char, always 6b */
            dev = Q_OUTPT? DEV_PT: DEV_TT;              /* device select */
            }
        reason = op_p (dev & DEV_MASK, ch);             /* output */
        delay = I_delay (sim_grtime (), ea, op);        /* next instruction */
        break;

    case OP_I:                                          /* input */
        if (Q_LGP21) {                                  /* LGP-21 */
            ch = 0;                                     /* initial shift */
            sh4 = ir & SIGN;                            /* 4b/6b select */
            dev = I_GETTK (ir);                         /* device select */
            }
        else {                                          /* LGP-30 */
            ch = I_GETTK (ir);                          /* initial shift */
            sh4 = Q_IN4B;                               /* 4b/6b select */
            dev = Q_INPT? DEV_PT: DEV_TT;               /* device select */
            }
        if (dev == DEV_SHIFT)                           /* shift? */
            A = shift_in (A, 0, sh4);                   /* shift 4/6b */
        else reason = op_i (dev & DEV_MASK, ch, sh4);   /* input */
        delay = I_delay (sim_grtime (), ea, op);        /* next instruction */
        break;

    case OP_Z:
        if (Q_LGP21) {                                  /* LGP-21 */
            if (ea & 0xF80) {                           /* no stop? */
                if (((ea & 0x800) && !bp32) ||          /* skip if any */
                    ((ea & 0x400) && !bp16) ||          /* selected switch */
                    ((ea & 0x200) && !bp8) ||           /* is off */
                    ((ea & 0x100) && !bp4) ||           /* or if */
                    ((ir & SIGN) && !OVF))              /* ovf sel and off */
                    PC = (PC + 1) & AMASK;
                if (ir & SIGN)                          /* -Z? clr overflow */
                    OVF = 0;
                }
            else {                                      /* stop */
                lgp21_sov = (ir & SIGN)? 1: 0;          /* pending sense? */
                reason = STOP_STOP;                     /* stop */
                }
            }
        else {                                          /* LGP-30 */
            if (out_done)                               /* P complete? */
                out_done = 0;
            else if (((ea & 0x800) && bp32) ||          /* bpt switch set? */
                ((ea & 0x400) && bp16) ||
                ((ea & 0x200) && bp8) ||
                ((ea & 0x100) && bp4)) ;                /* don't stop or stall */
            else if (out_strt)                          /* P pending? stall */
                reason = STOP_STALL;
            else reason = STOP_STOP;                    /* no, stop */
            }
        delay = I_delay (sim_grtime (), ea, op);        /* next instruction */
        break;                                          /* end switch */
        }

if (ovf_this_cycle) {
    if (Q_LGP21)                                        /* LGP-21? set OVF */
        OVF = 1;
    else reason = STOP_OVF;                             /* LGP-30? stop */
    }
return reason;
}

/* Support routines */

uint32 Read (uint32 ea)
{
return M[ea] & MMASK;
}

void Write (uint32 ea, uint32 dat)
{
M[ea] = dat & MMASK;
return;
}

/* Input shift */

uint32 shift_in (uint32 a, uint32 dat, uint32 sh4)
{
if (sh4)
    return (((a << 4) | (dat >> 2)) & DMASK);
return (((a << 6) | dat) & DMASK);
}

/* 32b * 32b multiply, signed */

uint32 Mul64 (uint32 a, uint32 b, uint32 *low)
{
uint32 sgn = a ^ b;
uint32 ah, bh, al, bl, rhi, rlo, rmid1, rmid2;

if ((a == 0) || (b == 0)) {                             /* zero argument? */
    if (low)
        *low = 0;
    return 0;
    }
a = ABS (a);
b = ABS (b);
ah = (a >> 16) & M16;                                   /* split operands */
bh = (b >> 16) & M16;                                   /* into 16b chunks */
al = a & M16;
bl = b & M16;
rhi = ah * bh;                                          /* high result */
rmid1 = ah * bl;
rmid2 = al * bh;
rlo = al * bl;
rhi = rhi + ((rmid1 >> 16) & M16) + ((rmid2 >> 16) & M16);
rmid1 = (rlo + (rmid1 << 16)) & M32;                    /* add mid1 to lo */
if (rmid1 < rlo)                                        /* carry? incr hi */
    rhi = rhi + 1;
rmid2 = (rmid1 + (rmid2 << 16)) & M32;                  /* add mid2 to to */
if (rmid2 < rmid1)                                      /* carry? incr hi */
    rhi = rhi + 1;
if (sgn & SIGN) {                                       /* result negative? */
    rmid2 = NEG (rmid2);                                /* negate */
    rhi = (~rhi + (rmid2 == 0)) & M32;
    }
if (low)                                                /* low result */
    *low = rmid2;
return rhi & M32;
}

/* 32b/32b divide (done as 32b'0/32b) */

t_bool Div32 (uint32 dvd, uint32 dvr, uint32 *q)
{
uint32 sgn = dvd ^ dvr;
uint32 i, quo;

dvd = ABS (dvd);
dvr = ABS (dvr);
if (dvd >= dvr)
    return TRUE;
for (i = quo = 0; i < 31; i++) {                        /* 31 iterations */
    quo = quo << 1;                                     /* shift quotient */
    dvd = dvd << 1;                                     /* shift dividend */
    if (dvd >= dvr) {                                   /* step work? */
        dvd = (dvd - dvr) & M32;                        /* subtract dvr */
        quo = quo + 1;
        }
    }
quo = (quo + 1) & MMASK;                                /* round low bit */
if (sgn & SIGN)                                         /* result -? */
    quo = NEG (quo);
if (q)                                                  /* return quo */
    *q = quo;
return FALSE;                                           /* no overflow */
}

/* Rotational delay */

uint32 I_delay (uint32 opc, uint32 ea, uint32 op)
{
uint32 tmin = Q_LGP21? min_21[op]: min_30[op];
uint32 tmax = Q_LGP21? max_21[op]: max_30[op];
uint32 nsc, curp, newp, oprp, pcdelta, opdelta;

if (Q_LGP21) {                                          /* LGP21 */
    nsc = NSC_21;                                       /* full rotation delay */
    curp = log_to_phys_21[opc & SCMASK_21];             /* current phys pos */
    newp = log_to_phys_21[PC & SCMASK_21];              /* new PC phys pos */
    oprp = log_to_phys_21[ea & SCMASK_21];              /* ea phys pos */
    pcdelta = (newp - curp + NSC_21) & SCMASK_21;
    opdelta = (oprp - curp + NSC_21) & SCMASK_21;
    }
else {
    nsc = NSC_30;
    curp = log_to_phys_30[opc & SCMASK_30];
    newp = log_to_phys_30[PC & SCMASK_30];
    oprp = log_to_phys_30[ea & SCMASK_30];
    pcdelta = (newp - curp + NSC_30) & SCMASK_30;
    opdelta = (oprp - curp + NSC_30) & SCMASK_30;
    }
if (tmax == 0) {                                        /* skip ea calc? */
    if (pcdelta >= tmin)                                /* new PC >= min? */
        return pcdelta - 1;
    return pcdelta + nsc - 1;
    }
if ((opdelta >= tmin) && (opdelta <= tmax))
    return pcdelta - 1;
return pcdelta + nsc - 1;
}

/* Reset routine */

t_stat cpu_reset (DEVICE *dptr)
{
OVF = 0;
inp_strt = 0;
inp_done = 0;
out_strt = 0;
out_done = 0;
lgp21_sov = 0;
delay = 0;
lgp_vm_init ();
pcq_r = find_reg ("CQ", NULL, dptr);
if (pcq_r)
    pcq_r->qptr = 0;
else return SCPE_IERR;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}

/* Validate option, must be LGP30 */

t_stat cpu_set_30opt (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (Q_LGP21)
    return SCPE_ARG;
return SCPE_OK;
}

/* Validate input option, must be LGP30 */

t_stat cpu_set_30opt_i (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (Q_LGP21 || (cptr == NULL))
    return SCPE_ARG;
if (strcmp (cptr, "TTI") == 0)
    uptr->flags = uptr->flags & ~UNIT_INPT;
else if (strcmp (cptr, "PTR") == 0)
    uptr->flags = uptr->flags | UNIT_INPT;
else return SCPE_ARG;
return SCPE_OK;
}

/* Validate output option, must be LGP30 */

t_stat cpu_set_30opt_o (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (Q_LGP21 || (cptr == NULL))
    return SCPE_ARG;
if (strcmp (cptr, "TTO") == 0)
    uptr->flags = uptr->flags & ~UNIT_OUTPT;
else if (strcmp (cptr, "PTP") == 0)
    uptr->flags = uptr->flags | UNIT_OUTPT;
else return SCPE_ARG;
return SCPE_OK;
}

/* Set CPU to LGP21 or LPG30 */

t_stat cpu_set_model (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (val)
    uptr->flags = uptr->flags & ~(UNIT_IN4B|UNIT_INPT|UNIT_OUTPT);
return reset_all (0);
}

/* Show CPU type and all options */

t_stat cpu_show_model (FILE *st, UNIT *uptr, int32 val, void *desc)
{
fputs (Q_LGP21? "LGP-21": "LGP-30", st);
if (uptr->flags & UNIT_TTSS_D)
    fputs (", track/sector", st);
if (uptr->flags & UNIT_LGPH_D)
    fputs (", LGP hex", st);
fputs (Q_MANI? ", manual": ", tape", st);
if (!Q_LGP21) {
    fputs (Q_IN4B? ", 4b": ", 6b", st);
    fputs (Q_INPT? ", in=PTR": ", in=TTI", st);
    fputs (Q_OUTPT? ", out=PTP": ", out=TTO", st);
    }
return SCPE_OK;
}

/* Memory examine */

t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
    return SCPE_NXM;
if (vptr != NULL)
    *vptr = Read (addr);
return SCPE_OK;
}

/* Memory deposit */

t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
    return SCPE_NXM;
Write (addr, val);
return SCPE_OK;
}

/* Execute */

t_stat cpu_set_exec (UNIT *uptr, int32 val, char *cptr, void *desc)
{
uint32 inst;
t_stat r;

if (cptr) {
    inst = get_uint (cptr, 16, DMASK, &r);
    if (r != SCPE_OK)
        return r;
    }
else inst = IR;
while ((r = cpu_one_inst (PC, inst)) == STOP_STALL) {
    sim_interval = 0;
    if (r = sim_process_event ())
        return r;
    }
return r;
}

/* Fill */

t_stat cpu_set_fill (UNIT *uptr, int32 val, char *cptr, void *desc)
{
uint32 inst;
t_stat r;

if (cptr) {
    inst = get_uint (cptr, 16, DMASK, &r);
    if (r != SCPE_OK)
        return r;
    IR = inst;
    }
else IR = A;
return SCPE_OK;
}