1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
|
/* lgp_cpu.c: LGP CPU simulator
Copyright (c) 2004-2008, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
cpu LGP-30 [LGP-21] CPU
22-Sep-05 RMS Fixed declarations (from Sterling Garwood)
04-Sep-05 RMS Fixed missing returns (found by Peter Schorn)
04-Jan-05 RMS Modified VM pointer setup
The system state for the LGP-30 [LGP-21] is:
A<0:31> accumulator
C<0:11> counter (PC)
OVF overflow flag [LGP-21 only]
The LGP-30 [LGP-21] has just one instruction format:
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| |opcode | | operand address | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
LGP-30 instructions:
<0,12:15> operation
0 stop
1 A <- M[ea]
2 M[ea]<addr> <- A<addr>
3 M[ea]<addr> <- C + 1
4 input
5 A <- A / M[ea]
6 A <- A * M[ea], low result
7 A <- A * M[ea], high result
8 output
9 A <- A & M[ea]
A C <- ea
B C <- ea if A < 0
-B C <- ea if (A < 0) || T-switch set
C M[ea] <- A
D M[ea] <- A, A <- 0
E A <- A + M[ea]
F A <- A - M[ea]
LGP-21 instructions:
<0,12:15> operation
0 stop; sense and skip
-0 stop; sense overflow and skip
1 A <- M[ea]
2 M[ea]<addr> <- A<addr>
3 M[ea]<addr> <- C + 1
4 6b input
-4 4b input
5 A <- A / M[ea]
6 A <- A * M[ea], low result
7 A <- A * M[ea], high result
8 6b output
-8 4b output
9 A <- A & M[ea]
A C <- ea
B C <- ea if A < 0
-B C <- ea if (A < 0) || T-switch set
C M[ea] <- A
D M[ea] <- A, A <- 0
E A <- A + M[ea]
F A <- A - M[ea]
The LGP-30 [LGP-21] has 4096 32b words of memory. The low order
bit is always read and stored as 0. The LGP-30 uses a drum for
memory, with 64 tracks of 64 words. The LGP-21 uses a disk for
memory, with 32 tracks of 128 words.
This routine is the instruction decode routine for the LGP-30
[LGP-21]. It is called from the simulator control program to
execute instructions in simulated memory, starting at the simulated
PC. It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
STOP instruction
breakpoint encountered
overflow [LGP-30]
I/O error in I/O simulator
2. Interrupts. There are no interrupts.
3. Non-existent memory. All of memory always exists.
4. Adding I/O devices. The LGP-30 could not support additional
I/O devices. The LGP-21 could but none are known.
*/
#include "lgp_defs.h"
#define PCQ_SIZE 64 /* must be 2**n */
#define PCQ_MASK (PCQ_SIZE - 1)
#define PCQ_ENTRY pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = (PC - 1) & AMASK;
#define M16 0xFFFF
#define M32 0xFFFFFFFF
#define NEG(x) ((~(x) + 1) & DMASK)
#define ABS(x) (((x) & SIGN)? NEG (x): (x))
uint32 M[MEMSIZE] = { 0 }; /* memory */
uint32 PC = 0; /* counter */
uint32 A = 0; /* accumulator */
uint32 IR = 0; /* instr register */
uint32 OVF = 0; /* overflow indicator */
uint32 t_switch = 0; /* transfer switch */
uint32 bp32 = 0; /* BP32 switch */
uint32 bp16 = 0; /* BP16 switch */
uint32 bp8 = 0; /* BP8 switch */
uint32 bp4 = 0; /* BP4 switch */
uint32 inp_strt = 0; /* input started */
uint32 inp_done = 0; /* input done */
uint32 out_strt = 0; /* output started */
uint32 out_done = 0; /* output done */
uint32 lgp21_sov = 0; /* LGP-21 sense pending */
int32 delay = 0;
int16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
int32 pcq_p = 0; /* PC queue ptr */
REG *pcq_r = NULL; /* PC queue reg ptr */
extern int32 sim_interval;
extern int32 sim_int_char;
extern uint32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
extern int32 sim_step;
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_model (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_show_model (FILE *st, UNIT *uptr, int32 val, void *desc);
t_stat cpu_set_30opt (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_30opt_i (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_30opt_o (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_fill (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_exec (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_one_inst (uint32 opc, uint32 ir);
uint32 Mul64 (uint32 a, uint32 b, uint32 *low);
t_bool Div32 (uint32 dvd, uint32 dvr, uint32 *q);
uint32 I_delay (uint32 opc, uint32 ea, uint32 op);
uint32 shift_in (uint32 a, uint32 dat, uint32 sh4);
extern t_stat op_p (uint32 dev, uint32 ch);
extern t_stat op_i (uint32 dev, uint32 ch, uint32 sh4);
extern void lgp_vm_init (void);
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX+UNIT_IN4B+UNIT_TTSS_D, MEMSIZE) };
REG cpu_reg[] = {
{ DRDATA (C, PC, 12), REG_VMAD },
{ HRDATA (A, A, 32), REG_VMIO },
{ HRDATA (IR, IR, 32), REG_VMIO },
{ FLDATA (OVF, OVF, 0) },
{ FLDATA (TSW, t_switch, 0) },
{ FLDATA (BP32, bp32, 0) },
{ FLDATA (BP16, bp16, 0) },
{ FLDATA (BP8, bp8, 0) },
{ FLDATA (BP4, bp4, 0) },
{ FLDATA (INPST, inp_strt, 0) },
{ FLDATA (INPDN, inp_done, 0) },
{ FLDATA (OUTST, out_strt, 0) },
{ FLDATA (OUTDN, out_done, 0) },
{ DRDATA (DELAY, delay, 7) },
{ BRDATA (CQ, pcq, 16, 12, PCQ_SIZE), REG_RO + REG_CIRC },
{ HRDATA (CQP, pcq_p, 6), REG_HRO },
{ HRDATA (WRU, sim_int_char, 8) },
{ NULL }
};
MTAB cpu_mod[] = {
{ UNIT_LGP21, UNIT_LGP21, "LGP-21", "LGP21", &cpu_set_model, &cpu_show_model },
{ UNIT_LGP21, 0, "LGP-30", "LGP30", &cpu_set_model, &cpu_show_model },
{ UNIT_TTSS_D, UNIT_TTSS_D, 0, "TRACK" },
{ UNIT_TTSS_D, 0, 0, "NORMAL" },
{ UNIT_LGPH_D, UNIT_LGPH_D, 0, "LGPHEX" },
{ UNIT_LGPH_D, 0, 0, "STANDARDHEX" },
{ UNIT_MANI, UNIT_MANI, NULL, "MANUAL" },
{ UNIT_MANI, 0, NULL, "TAPE" },
{ UNIT_IN4B, UNIT_IN4B, NULL, "4B", &cpu_set_30opt },
{ UNIT_IN4B, 0, NULL, "6B", &cpu_set_30opt },
{ MTAB_XTD|MTAB_VDV, 0, NULL, "INPUT", &cpu_set_30opt_i },
{ MTAB_XTD|MTAB_VDV, 0, NULL, "OUTPUT", &cpu_set_30opt_o },
{ MTAB_XTD|MTAB_VDV, 0, NULL, "EXECUTE", &cpu_set_exec },
{ MTAB_XTD|MTAB_VDV, 0, NULL, "FILL", &cpu_set_fill },
{ 0 }
};
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 10, 12, 1, 16, 32,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL
};
/* Timing tables */
/* Optimization minima and maxima
Z B Y R I D N M P E U T H C A S */
static const int32 min_30[16] = {
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
};
static const int32 max_30[16] = {
7, 7, 7, 7, 7, 5, 8, 6, 7, 7, 0, 0, 7, 7, 7, 7
};
static const int32 min_21[16] = {
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
};
static const int32 max_21[16] = {
0, 16, 16, 16, 0, 58, 81, 79, 0, 16, 0, 0, 16, 16, 16, 16
};
static const uint32 log_to_phys_30[NSC_30] = { /* drum interlace chart */
0, 57, 50, 43, 36, 29, 22, 15, 8 ,
1, 58, 51, 44, 37, 30, 23, 16, 9 ,
2, 59, 52, 45, 38, 31, 24, 17, 10,
3, 60, 53, 46, 39, 32, 25, 18, 11,
4, 61, 54, 47, 40, 33, 26, 19, 12,
5, 62, 55, 48, 41, 32, 27, 20, 13,
6, 63, 56, 49, 42, 33, 28, 21, 14,
7
};
static const uint32 log_to_phys_21[NSC_21] = { /* disk interlace chart */
0, 64, 57, 121, 50, 114, 43, 107, 36, 100, 29, 93, 22, 86, 15, 79, 8, 72,
1, 65, 58, 122, 51, 115, 44, 108, 37, 101, 30, 94, 23, 87, 16, 80, 9, 73,
2, 66, 59, 123, 52, 116, 45, 109, 38, 102, 31, 95, 24, 88, 17, 81, 10, 74,
3, 67, 60, 124, 53, 117, 46, 110, 39, 103, 32, 96, 25, 89, 18, 82, 11, 75,
4, 68, 61, 125, 54, 118, 47, 111, 40, 104, 33, 97, 26, 90, 19, 83, 12, 76,
5, 69, 62, 126, 55, 119, 48, 112, 41, 105, 34, 98, 27, 91, 20, 84, 12, 77,
6, 70, 63, 127, 56, 120, 49, 113, 42, 106, 35, 99, 28, 92, 21, 85, 13, 78,
7, 71
};
t_stat sim_instr (void)
{
t_stat r = 0;
uint32 oPC;
/* Restore register state */
PC = PC & AMASK; /* mask PC */
sim_cancel_step (); /* defang SCP step */
if (lgp21_sov) { /* stop sense pending? */
lgp21_sov = 0;
if (!OVF) /* ovf off? skip */
PC = (PC + 1) & AMASK;
else OVF = 0; /* on? reset */
}
/* Main instruction fetch/decode loop */
do {
if (sim_interval <= 0) { /* check clock queue */
if (r = sim_process_event ())
break;
}
if (delay > 0) { /* delay to next instr */
delay = delay - 1; /* count down delay */
sim_interval = sim_interval - 1;
continue; /* skip execution */
}
if (sim_brk_summ && /* breakpoint? */
sim_brk_test (PC, SWMASK ('E'))) {
r = STOP_IBKPT; /* stop simulation */
break;
}
IR = Read (oPC = PC); /* get instruction */
PC = (PC + 1) & AMASK; /* increment PC */
sim_interval = sim_interval - 1;
if (r = cpu_one_inst (oPC, IR)) { /* one instr; error? */
if (r == STOP_STALL) { /* stall? */
PC = oPC; /* back up PC */
delay = r = 0; /* no delay */
}
else break;
}
if (sim_step && (--sim_step <= 0)) /* do step count */
r = SCPE_STOP;
} while (r == 0); /* loop until halted */
pcq_r->qptr = pcq_p; /* update pc q ptr */
return r;
}
/* Execute one instruction */
t_stat cpu_one_inst (uint32 opc, uint32 ir)
{
uint32 ea, op, dat, res, dev, sh4, ch;
t_bool ovf_this_cycle = FALSE;
t_stat reason = 0;
op = I_GETOP (ir); /* opcode */
ea = I_GETEA (ir); /* address */
switch (op) { /* case on opcode */
/* Loads, stores, transfers instructions */
case OP_B: /* bring */
A = Read (ea); /* A <- M[ea] */
delay = I_delay (opc, ea, op);
break;
case OP_H: /* hold */
Write (ea, A); /* M[ea] <- A */
delay = I_delay (opc, ea, op);
break;
case OP_C: /* clear */
Write (ea, A); /* M[ea] <- A */
A = 0; /* A <- 0 */
delay = I_delay (opc, ea, op);
break;
case OP_Y: /* store address */
dat = Read (ea); /* get operand */
dat = (dat & ~I_EA) | (A & I_EA); /* merge address */
Write (ea, dat);
delay = I_delay (opc, ea, op);
break;
case OP_R: /* return address */
dat = Read (ea); /* get operand */
dat = (dat & ~I_EA) | (((PC + 1) & AMASK) << I_V_EA);
Write (ea, dat);
delay = I_delay (opc, ea, op);
break;
case OP_U: /* uncond transfer */
PCQ_ENTRY;
PC = ea; /* transfer */
delay = I_delay (opc, ea, op);
break;
case OP_T: /* conditional transfer */
if ((A & SIGN) || /* A < 0 or */
((ir & SIGN) && t_switch)) { /* -T and Tswitch set? */
PCQ_ENTRY;
PC = ea; /* transfer */
}
delay = I_delay (opc, ea, op);
break;
/* Arithmetic and logical instructions */
case OP_A: /* add */
dat = Read (ea); /* get operand */
res = (A + dat) & DMASK; /* add */
if ((~A ^ dat) & (dat ^ res) & SIGN) /* calc overflow */
ovf_this_cycle = TRUE;
A = res; /* save result */
delay = I_delay (opc, ea, op);
break;
case OP_S: /* sub */
dat = Read (ea); /* get operand */
res = (A - dat) & DMASK; /* subtract */
if ((A ^ dat) & (~dat ^ res) & SIGN) /* calc overflow */
ovf_this_cycle = TRUE;
A = res;
delay = I_delay (opc, ea, op);
break;
case OP_M: /* multiply high */
dat = Read (ea); /* get operand */
A = (Mul64 (A, dat, NULL) << 1) & DMASK; /* multiply */
delay = I_delay (opc, ea, op);
break;
case OP_N: /* multiply low */
dat = Read (ea); /* get operand */
Mul64 (A, dat, &res); /* multiply */
A = res; /* keep low result */
delay = I_delay (opc, ea, op); /* total delay */
break;
case OP_D: /* divide */
dat = Read (ea); /* get operand */
if (Div32 (A, dat, &A)) /* divide; overflow? */
ovf_this_cycle = TRUE;
delay = I_delay (opc, ea, op);
break;
case OP_E: /* extract */
dat = Read (ea); /* get operand */
A = A & dat; /* and */
delay = I_delay (opc, ea, op);
break;
/* IO instructions */
case OP_P: /* output */
if (Q_LGP21) { /* LGP-21 */
ch = A >> 26; /* char, 6b */
if (ir & SIGN) /* 4b? convert */
ch = (ch & 0x3C) | 2;
dev = I_GETTK (ir); /* device select */
}
else { /* LGP-30 */
ch = I_GETTK (ir); /* char, always 6b */
dev = Q_OUTPT? DEV_PT: DEV_TT; /* device select */
}
reason = op_p (dev & DEV_MASK, ch); /* output */
delay = I_delay (sim_grtime (), ea, op); /* next instruction */
break;
case OP_I: /* input */
if (Q_LGP21) { /* LGP-21 */
ch = 0; /* initial shift */
sh4 = ir & SIGN; /* 4b/6b select */
dev = I_GETTK (ir); /* device select */
}
else { /* LGP-30 */
ch = I_GETTK (ir); /* initial shift */
sh4 = Q_IN4B; /* 4b/6b select */
dev = Q_INPT? DEV_PT: DEV_TT; /* device select */
}
if (dev == DEV_SHIFT) /* shift? */
A = shift_in (A, 0, sh4); /* shift 4/6b */
else reason = op_i (dev & DEV_MASK, ch, sh4); /* input */
delay = I_delay (sim_grtime (), ea, op); /* next instruction */
break;
case OP_Z:
if (Q_LGP21) { /* LGP-21 */
if (ea & 0xF80) { /* no stop? */
if (((ea & 0x800) && !bp32) || /* skip if any */
((ea & 0x400) && !bp16) || /* selected switch */
((ea & 0x200) && !bp8) || /* is off */
((ea & 0x100) && !bp4) || /* or if */
((ir & SIGN) && !OVF)) /* ovf sel and off */
PC = (PC + 1) & AMASK;
if (ir & SIGN) /* -Z? clr overflow */
OVF = 0;
}
else { /* stop */
lgp21_sov = (ir & SIGN)? 1: 0; /* pending sense? */
reason = STOP_STOP; /* stop */
}
}
else { /* LGP-30 */
if (out_done) /* P complete? */
out_done = 0;
else if (((ea & 0x800) && bp32) || /* bpt switch set? */
((ea & 0x400) && bp16) ||
((ea & 0x200) && bp8) ||
((ea & 0x100) && bp4)) ; /* don't stop or stall */
else if (out_strt) /* P pending? stall */
reason = STOP_STALL;
else reason = STOP_STOP; /* no, stop */
}
delay = I_delay (sim_grtime (), ea, op); /* next instruction */
break; /* end switch */
}
if (ovf_this_cycle) {
if (Q_LGP21) /* LGP-21? set OVF */
OVF = 1;
else reason = STOP_OVF; /* LGP-30? stop */
}
return reason;
}
/* Support routines */
uint32 Read (uint32 ea)
{
return M[ea] & MMASK;
}
void Write (uint32 ea, uint32 dat)
{
M[ea] = dat & MMASK;
return;
}
/* Input shift */
uint32 shift_in (uint32 a, uint32 dat, uint32 sh4)
{
if (sh4)
return (((a << 4) | (dat >> 2)) & DMASK);
return (((a << 6) | dat) & DMASK);
}
/* 32b * 32b multiply, signed */
uint32 Mul64 (uint32 a, uint32 b, uint32 *low)
{
uint32 sgn = a ^ b;
uint32 ah, bh, al, bl, rhi, rlo, rmid1, rmid2;
if ((a == 0) || (b == 0)) { /* zero argument? */
if (low)
*low = 0;
return 0;
}
a = ABS (a);
b = ABS (b);
ah = (a >> 16) & M16; /* split operands */
bh = (b >> 16) & M16; /* into 16b chunks */
al = a & M16;
bl = b & M16;
rhi = ah * bh; /* high result */
rmid1 = ah * bl;
rmid2 = al * bh;
rlo = al * bl;
rhi = rhi + ((rmid1 >> 16) & M16) + ((rmid2 >> 16) & M16);
rmid1 = (rlo + (rmid1 << 16)) & M32; /* add mid1 to lo */
if (rmid1 < rlo) /* carry? incr hi */
rhi = rhi + 1;
rmid2 = (rmid1 + (rmid2 << 16)) & M32; /* add mid2 to to */
if (rmid2 < rmid1) /* carry? incr hi */
rhi = rhi + 1;
if (sgn & SIGN) { /* result negative? */
rmid2 = NEG (rmid2); /* negate */
rhi = (~rhi + (rmid2 == 0)) & M32;
}
if (low) /* low result */
*low = rmid2;
return rhi & M32;
}
/* 32b/32b divide (done as 32b'0/32b) */
t_bool Div32 (uint32 dvd, uint32 dvr, uint32 *q)
{
uint32 sgn = dvd ^ dvr;
uint32 i, quo;
dvd = ABS (dvd);
dvr = ABS (dvr);
if (dvd >= dvr)
return TRUE;
for (i = quo = 0; i < 31; i++) { /* 31 iterations */
quo = quo << 1; /* shift quotient */
dvd = dvd << 1; /* shift dividend */
if (dvd >= dvr) { /* step work? */
dvd = (dvd - dvr) & M32; /* subtract dvr */
quo = quo + 1;
}
}
quo = (quo + 1) & MMASK; /* round low bit */
if (sgn & SIGN) /* result -? */
quo = NEG (quo);
if (q) /* return quo */
*q = quo;
return FALSE; /* no overflow */
}
/* Rotational delay */
uint32 I_delay (uint32 opc, uint32 ea, uint32 op)
{
uint32 tmin = Q_LGP21? min_21[op]: min_30[op];
uint32 tmax = Q_LGP21? max_21[op]: max_30[op];
uint32 nsc, curp, newp, oprp, pcdelta, opdelta;
if (Q_LGP21) { /* LGP21 */
nsc = NSC_21; /* full rotation delay */
curp = log_to_phys_21[opc & SCMASK_21]; /* current phys pos */
newp = log_to_phys_21[PC & SCMASK_21]; /* new PC phys pos */
oprp = log_to_phys_21[ea & SCMASK_21]; /* ea phys pos */
pcdelta = (newp - curp + NSC_21) & SCMASK_21;
opdelta = (oprp - curp + NSC_21) & SCMASK_21;
}
else {
nsc = NSC_30;
curp = log_to_phys_30[opc & SCMASK_30];
newp = log_to_phys_30[PC & SCMASK_30];
oprp = log_to_phys_30[ea & SCMASK_30];
pcdelta = (newp - curp + NSC_30) & SCMASK_30;
opdelta = (oprp - curp + NSC_30) & SCMASK_30;
}
if (tmax == 0) { /* skip ea calc? */
if (pcdelta >= tmin) /* new PC >= min? */
return pcdelta - 1;
return pcdelta + nsc - 1;
}
if ((opdelta >= tmin) && (opdelta <= tmax))
return pcdelta - 1;
return pcdelta + nsc - 1;
}
/* Reset routine */
t_stat cpu_reset (DEVICE *dptr)
{
OVF = 0;
inp_strt = 0;
inp_done = 0;
out_strt = 0;
out_done = 0;
lgp21_sov = 0;
delay = 0;
lgp_vm_init ();
pcq_r = find_reg ("CQ", NULL, dptr);
if (pcq_r)
pcq_r->qptr = 0;
else return SCPE_IERR;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Validate option, must be LGP30 */
t_stat cpu_set_30opt (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (Q_LGP21)
return SCPE_ARG;
return SCPE_OK;
}
/* Validate input option, must be LGP30 */
t_stat cpu_set_30opt_i (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (Q_LGP21 || (cptr == NULL))
return SCPE_ARG;
if (strcmp (cptr, "TTI") == 0)
uptr->flags = uptr->flags & ~UNIT_INPT;
else if (strcmp (cptr, "PTR") == 0)
uptr->flags = uptr->flags | UNIT_INPT;
else return SCPE_ARG;
return SCPE_OK;
}
/* Validate output option, must be LGP30 */
t_stat cpu_set_30opt_o (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (Q_LGP21 || (cptr == NULL))
return SCPE_ARG;
if (strcmp (cptr, "TTO") == 0)
uptr->flags = uptr->flags & ~UNIT_OUTPT;
else if (strcmp (cptr, "PTP") == 0)
uptr->flags = uptr->flags | UNIT_OUTPT;
else return SCPE_ARG;
return SCPE_OK;
}
/* Set CPU to LGP21 or LPG30 */
t_stat cpu_set_model (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (val)
uptr->flags = uptr->flags & ~(UNIT_IN4B|UNIT_INPT|UNIT_OUTPT);
return reset_all (0);
}
/* Show CPU type and all options */
t_stat cpu_show_model (FILE *st, UNIT *uptr, int32 val, void *desc)
{
fputs (Q_LGP21? "LGP-21": "LGP-30", st);
if (uptr->flags & UNIT_TTSS_D)
fputs (", track/sector", st);
if (uptr->flags & UNIT_LGPH_D)
fputs (", LGP hex", st);
fputs (Q_MANI? ", manual": ", tape", st);
if (!Q_LGP21) {
fputs (Q_IN4B? ", 4b": ", 6b", st);
fputs (Q_INPT? ", in=PTR": ", in=TTI", st);
fputs (Q_OUTPT? ", out=PTP": ", out=TTO", st);
}
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
return SCPE_NXM;
if (vptr != NULL)
*vptr = Read (addr);
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE)
return SCPE_NXM;
Write (addr, val);
return SCPE_OK;
}
/* Execute */
t_stat cpu_set_exec (UNIT *uptr, int32 val, char *cptr, void *desc)
{
uint32 inst;
t_stat r;
if (cptr) {
inst = get_uint (cptr, 16, DMASK, &r);
if (r != SCPE_OK)
return r;
}
else inst = IR;
while ((r = cpu_one_inst (PC, inst)) == STOP_STALL) {
sim_interval = 0;
if (r = sim_process_event ())
return r;
}
return r;
}
/* Fill */
t_stat cpu_set_fill (UNIT *uptr, int32 val, char *cptr, void *desc)
{
uint32 inst;
t_stat r;
if (cptr) {
inst = get_uint (cptr, 16, DMASK, &r);
if (r != SCPE_OK)
return r;
IR = inst;
}
else IR = A;
return SCPE_OK;
}
|