1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
|
/* s3_cpu.c: IBM System/3 CPU simulator
Copyright (c) 2001-2005, Charles E. Owen
HPL & SLC instruction code Copyright (c) 2001 by Henk Stegeman
Decimal Arithmetic Copyright (c) 2000 by Roger Bowler
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Charles E. Owen shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Charles E. Owen.
------------------------------------------------------------------------------
cpu System/3 (models 10 and 15) central processor
The IBM System/3 was a popular small-business computing system introduced
in 1969 as an entry-level system for businesses that could not afford
the lowest rungs of the System/360. Its architecture is inspired by and
in some ways similar to the 360, but to save cost the instruction set is
much smaller and the I/O channel system greatly simplified. There is no
compatibilty between the two systems.
The original System/3 had two models, 6 and 10, and these came in two
configurations: card system and disk system. The unique feature of
the /3 was the use of 96-column cards, although traditional 80-column
cards were supprted also via attachment of a 1442 reader/punch.
System/3 is a batch-oriented system, controlled by an operating
system known as SCP (System Control Program), with it's own job control
language known as OCL (simpler and more logical than the JCL used on
the mainframes). Original models did not support multiprogramming
or any form of interactivity. (There was a hardware dual-program
facility available on the model 10 at the high end).
The line grew throughout the 1970s, overlapping the low end of the 360
line with the introduction of the model 15. The 15 (and later larger
variations of the model 12) broke the 64K limit designed in the original
models by adding a simple address translation unit to support up to 512K
bytes. The model 15 added a system of storage protection and allowed
multiprogramming in up to 3 partitions. Communications were added to
allow support of multiple 3270 terminals and the models 12 and 15 broke
the batch orientation and facilitated interactive use via the CCP
(communications control program). The System/3 was effectively replaced
by the much easier to manage and use System/34 and System/36 at the
low and middle of the range, and by System/370 or System/38 at the
high end.
This simulator implements the model 10 and model 15. Models 4, 6,
8, and 12 are not supported (these were technical variations on the
design which offered no functionality not present on either 10 or 15).
The System/3 is a byte-oriented machine with a data path of 8 bits
in all models, and an address width of 16 bits.
The register state for the System/3 CPU is:
BAR <0:15> Operand 1 address register
AAR <0:15> Operand 2 address register
XR1 <0:15> Index Register 1
XR2 <0:15> Index Register 2
PSR <0:15> Condition Register
IAR [0:9]<0:15> Instruction Address Register (p1, p2, plus 1 for each interrupt)
ARR [0:9]<0:15> Address Recall Register (p1, p2, plus 1 for each interrupt)
(The P2 IAR & ARR are used for the Dual Program feature)
Instruction formats follow the same basic pattern: a 1-byte opcode, a
1-byte "Q byte", and one or two addresses following in a format defined
by the first 4 bits of the opcode:
Op Code Q Byte Address(es)
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--...
| A 1 | A 2 | operation | | (defined by operation)| | Format based on A1, A2
+--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--+--+ +--+--+--+--+--+--+--...
{ --- } <---------------- Bits 00 = Operand 2 specified by 2-byte direct addr
Bits 01 = Operand 2 is 1-byte displacement + XR1
Bits 10 = Operand 2 is 1-byte displacement + XR2
Bits 11 = Operand 2 is not used
{ --- } <---------------------- Bits 00 = Operand 1 specified by 2-byte direct addr
Bits 01 = Operand 1 is 1-byte displacement + XR1
Bits 10 = Operand 1 is 1-byte displacement + XR2
Bits 11 = Operand 1 is not used
Instructions come in 3 basic formats, of varying lengths which are determined
by the top 4 bits of opcode defined above. Minimum instruction length is 3 bytes,
maximum is 6.
1) Command Format (Bits 0-3 are 1111):
+------------+ +------------+ +------------+
| Opcode | | Q-byte | | R-byte +
+------------+ +------------+ +------------+
(The meaning of Q-byte and R-byte defined by the operation)
2) One Address Instructions (either bits 0-1 or bits 2-3 are 01):
Direct Addressing Format:
+------------+ +------------+ +-----------+----------+
| Opcode | | Q-byte | | MSB + LSB +
+------------+ +------------+ +-----------+----------+
Base-Displacement Format:
+------------+ +------------+ +------------+
| Opcode | | Q-byte | |displacement+
+------------+ +------------+ +------------+
Opcodes are 0011xxxx or 1100xxxx.
Q-byte can be: 1) An immediate operand
2) A mask
3) A branch condition
4) A data selection
2) Two Address Instructions (neither bits 0-1 nor bits 2-3 are both 11):
Operand 1 Address Direct (opcodes 0001 or 0010):
+------------+ +------------+ +----------+----------+ +------------+
| Opcode | | Q-byte | | MSB + LSB + |displacement|
+------------+ +------------+ +----------+----------+ +------------+
Operand 2 Address Direct (opcodes 0100 or 1000):
+------------+ +------------+ +------------+ +----------+----------+
| Opcode | | Q-byte | |displacement| | MSB + LSB +
+------------+ +------------+ +------------+ +----------+----------+
Both Addresses Direct (opcode 0000):
+------------+ +------------+ +----------+----------+ +-----------+----------+
| Opcode | | Q-byte | | MSB + LSB + + MSB + LSB +
+------------+ +------------+ +----------+----------+ +-----------+----------+
Both Addresses Displacement (opcodes 0101, 0110, 1001, or 1010):
+------------+ +------------+ +------------+ +------------+
| Opcode | | Q-byte | |displacement| |displacement|
+------------+ +------------+ +------------+ +------------+
Assembler Mnemonic Format
-------------------------
The assembler format contains the same elements as the machine language operation,
but not always in the same format. The operation code frequently specifies both
the opcode and the Q byte, and the top nybble of the opcode is determined by
the format of the addresses.
Addresses take two forms: the direct address in hex, or a relative address
specified thusly: (byte,XRx) where 'byte' is a 1-byte offset, and XRx is
either XR1 or XR2 for the two index registers. Use these formats when
'address' is indicated below:
When 'reg' is mentioned, a mnemonic may be used for the register, thusly:
IAR Instruction Address Register for the current program level
ARR Address Recall Register for the current program level
P1IAR IAR for Program Level 1
P2IAR IAR for Program Level 2
PSR Program Status Register
0x01 - Equal
0x02 - Low
0x04 - High
0x08 - Decimal overflow
0x10 - Test false
0x20 - Binary overflow
0x40 - Not used
0x80 - Not used
XR1 Index Register 1
XR2 Index Register 2
IARx IAR for the interrupt level x (x = 0 thru 7)
All other operands mentioned below are single-byte hex, except for the
length (len) operand of the two-address instructions, which is a decimal length
in the range 1-256.
No-address formats:
------------------
HPL hex,hex Halt Program Level, the operands are the Q and R bytes
One-address formats:
-------------------
A reg,address Add to register
CLI address,byte Compare Logical Immediate
MVI address,byte Move Immediate
TBF address,mask Test Bits Off
TBN address,mask Test Bits On
SBF address,mask Set Bits Off
SBN address,mask Set Bits On
ST reg,address Store Register
L reg,address Load Register
LA reg,address Load Address
JC address,cond Jump on Condition
BC address,cond Branch on Condition
These operations do not specify a qbyte, it is implicit in the opcode:
B address Unconditional branch to address
BE address Branch Equal
BNE address Branch Not Equal
BH address Branch High
BNH address Branch Not High
BL address Branch Low
BNL address Branch Not Low
BT address Branch True
BF address Branch False
BP address Branch Plus
BM address Branch Minus
BNP address Branch Not Plus
BNM address Branch Not Minus
BZ address Branch Zero
BNZ address Branch Not Zero
BOZ address Branch Overflow Zoned
BOL address Branch Overflow Logical
BNOZ address Branch No Overflow Zoned
BNOL address Branch No Overflow Logical
NOPB address No - never jump
(substitute J for B above for a set of Jumps -- 1-byte operand (not 2),
always jumps forward up to 255 bytes. In this case, 'address' cannot be
less than the current address, nor greater than the current address + 255)
Two-address formats (first address is destination, len is decimal 1-256):
-------------------
MVC address,address,len Move Characters
CLC address,address,len Compare Logical Characters
ALC address,address,len Add Logical Characters
SLC address,address,len Subtract Logical Characters
ED address,address,len Edit
ITC address,address,len Insert and Test Characters
AZ address,address,len Add Zoned Decimal
SZ address,address,len Subtract Zoned Decimal
MNN address,address Move Numeric to Numeric
MNZ address,address Move Numeric to Zone
MZZ address,address Move Zone to Zone
MZN address,address Move Zone to Numeric
I/O Format
----------
In the I/O format, there are always 3 fields:
da - Device Address 0-15 (decimal)
m - Modifier 0-1
n - Function 0-7
The meaning of these is entirely defined by the device addressed.
There may be an optional control byte, or an optional address (based on
the type of instruction).
SNS da,m,n,address Sense I/O
LIO da,m,n,address Load I/O
TIO da,m,n,address Test I/O
SIO da,m,n,cc Start I/O -- cc is a control byte
APL da,m,n Advance Program Level
---------------------------------------------
Here is a handy opcode cross-reference table:
---------------------------------------------
| x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
---+------------------------------------------------------------------
0x | - - - - ZAZ - AZ SZ MVX - ED ITC MVC CLC ALC SLC
1x | - - - - ZAZ - AZ SZ MVX - ED ITC MVC CLC ALC SLC
2x | - - - - ZAZ - AZ SZ MVX - ED ITC MVC CLC ALC SLC
3x | SNS LIO - - ST L A - TBN TBF SBN SBF MVI CLI - -
|
4x | - - - - ZAZ - AZ SZ MVX - ED ITC MVC CLC ALC SLC
5x | - - - - ZAZ - AZ SZ MVX - ED ITC MVC CLC ALC SLC
6x | - - - - ZAZ - AZ SZ MVX - ED ITC MVC CLC ALC SLC
7x | SNS LIO - - ST L A - TBN TBF SBN SBF MVI CLI - -
|
8x | - - - - ZAZ - AZ SZ MVX - ED ITC MVC CLC ALC SLC
9x | - - - - ZAZ - AZ SZ MVX - ED ITC MVC CLC ALC SLC
Ax | - - - - ZAZ - AZ SZ MVX - ED ITC MVC CLC ALC SLC
Bx | SNS LIO - - ST L A - TBN TBF SBN SBF MVI CLI - -
|
Cx | BC TIO LA - - - - - - - - - - - - -
Dx | BC TIO LA - - - - - - - - - - - - -
Ex | BC TIO LA - - - - - - - - - - - - -
Fx | HPL APL JC SIO - - - - - - - - - - - -
This routine is the instruction decode routine for System/3.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
breakpoint encountered
program check caused by invalid opcode or qbyte or address or I/O spec
unknown I/O device and STOP_DEV flag set
I/O error in I/O simulator
2. Interrupts.
There are 8 levels of interrupt, each with it's own IAR (program
counter). When an interrupt occurs, execution begins at the
location in the IAR for that level interrupt. The program
must save and restore state. Each device is assigned both a
level and a priority in hardware. Interrupts are reset via
an SIO instruction, when this happens, the program level
IAR resumes control.
Interrupts are maintained in the global variable int_req,
which is zero if no interrupts are pending, otherwise, the
lower 16 bits represent devices, rightmost bit being device
0. Each device requesting an interrupt sets its bit on.
3. Non-existent memory. On the System/3, any reference to non-existent
memory (read or write) causes a program check and machine stop.
4. Adding I/O devices. These modules must be modified:
ibms3_defs.h add interrupt request definition
ibms3_cpu.c add IOT mask, PI mask, and routine to dev_table
ibms3_sys.c add pointer to data structures to sim_devices
*/
#include "s3_defs.h"
#define UNIT_V_M15 (UNIT_V_UF) /* Model 15 extensions */
#define UNIT_M15 (1 << UNIT_V_M15)
#define UNIT_V_DPF (UNIT_V_UF+1) /* Dual Programming */
#define UNIT_DPF (1 << UNIT_V_DPF)
#define UNIT_V_MSIZE (UNIT_V_UF+3) /* dummy mask */
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
uint8 M[MAXMEMSIZE] = { 0 }; /* memory */
int32 AAR = 0; /* Operand 1 addr reg */
int32 BAR = 0; /* Operand 2 addr reg */
int32 XR1 = 0; /* Index register 1 */
int32 XR2 = 0; /* Index register 2 */
int32 PSR = 0; /* Condition Register */
int32 IAR[10] = { 0 }; /* IAR 0-7 = int level 8=P1 9=P2 */
int32 ARR[10] = { 0 }; /* ARR 0-7 = int level 8=P1 9=P2 */
int32 dev_disable = 0; /* interrupt disable mask */
int32 int_req = 0; /* Interrupt request device bitmap */
int32 level = 8; /* Current Execution Level*/
int32 stop_dev = 0; /* stop on ill dev */
int32 SR = 0; /* Switch Register */
int32 saved_PC; /* Saved (old) PC) */
int32 debug_reg = 0; /* set for debug/trace */
int32 debug_flag = 0; /* 1 when trace.log open */
FILE *trace;
extern int32 sim_int_char;
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_boot (int32 unitno, DEVICE *dptr1);
extern int32 pkb (int32 op, int32 m, int32 n, int32 data);
extern int32 crd (int32 op, int32 m, int32 n, int32 data);
extern int32 lpt (int32 op, int32 m, int32 n, int32 data);
extern int32 dsk1 (int32 op, int32 m, int32 n, int32 data);
extern int32 dsk2 (int32 op, int32 m, int32 n, int32 data);
extern int32 cpu (int32 op, int32 m, int32 n, int32 data);
extern t_stat sim_activate (UNIT *uptr, int32 delay);
extern int32 fprint_sym (FILE *of, int32 addr, uint32 *val,
UNIT *uptr, int32 sw);
int32 nulldev (int32 opcode, int32 m, int32 n, int32 data);
int add_zoned (int32 addr1, int32 len1, int32 addr2, int32 len2);
int32 subtract_zoned (int32 addr1, int32 len1, int32 addr2, int32 len2);
static int32 compare(int32 byte1, int32 byte2, int32 cond);
static int32 condition(int32 qbyte);
static void store_decimal (int32 addr, int32 len, uint8 *dec, int sign);
static void load_decimal (int32 addr, int32 len, uint8 *result, int32 *count, int32 *sign);
static void add_decimal (uint8 *dec1, uint8 *dec2, uint8 *result, int32 *count);
static void subtract_decimal (uint8 *dec1, uint8 *dec2, uint8 *result, int *count, int *sign);
int32 GetMem(int32 addr);
int32 PutMem(int32 addr, int32 data);
/* IOT dispatch table */
/* System/3 supports only 16 unique device addresses! */
struct ndev dev_table[16] = {
{ 0, 0, &cpu }, /* Device 0: CPU control */
{ 1, 0, &pkb }, /* Device 1: 5471 console printer/keyboard */
{ 0, 0, &nulldev },
{ 0, 0, &nulldev },
{ 0, 0, &nulldev },
{ 0, 0, &crd }, /* Device 5: 1442 card reader/punch */
{ 0, 0, &nulldev }, /* Device 6: 3410 Tape drives 1 & 2 */
{ 0, 0, &nulldev }, /* Device 7: 3410 Tape drives 3 & 4 */
{ 0, 0, &nulldev },
{ 0, 0, &nulldev },
{ 0, 0, &dsk1 }, /* Device 10: 5444 Disk Drive 1 */
{ 0, 0, &dsk2 }, /* Device 11: 5444 Disk Drive 2 */
{ 0, 0, &nulldev }, /* Device 12: 5448 Disk Drive 1 */
{ 0, 0, &nulldev }, /* DEvice 13: 5448 Disk Drive 2 */
{ 0, 0, &lpt }, /* Device 14: 1403/5203 Printer */
{ 0, 0, &nulldev } /* Device 15: 5424 MFCU */
};
/* Priority assigned to interrupt levels */
int32 priority[8] = {8, 7, 5, 4, 3, 6, 2, 1};
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK, MAXMEMSIZE) };
REG cpu_reg[] = {
{ HRDATA (IAR, saved_PC, 16), REG_RO },
{ HRDATA (IAR-P1, IAR[8], 16) },
{ HRDATA (IAR-P2, IAR[9], 16) },
{ HRDATA (ARR-P1, ARR[8], 16) },
{ HRDATA (ARR-P2, ARR[9], 16) },
{ HRDATA (AAR, AAR, 16) },
{ HRDATA (BAR, BAR, 16) },
{ HRDATA (XR1, XR1, 16) },
{ HRDATA (XR2, XR2, 16) },
{ HRDATA (PSR, PSR, 16) },
{ HRDATA (SR, SR, 16) },
{ HRDATA (INT, int_req, 16), REG_RO },
{ HRDATA (LEVEL, level, 16) },
{ HRDATA (IAR0, IAR[0], 16) },
{ HRDATA (IAR1, IAR[1], 16) },
{ HRDATA (IAR2, IAR[2], 16) },
{ HRDATA (IAR3, IAR[3], 16) },
{ HRDATA (IAR4, IAR[4], 16) },
{ HRDATA (IAR5, IAR[5], 16) },
{ HRDATA (IAR6, IAR[6], 16) },
{ HRDATA (IAR7, IAR[7], 16) },
{ HRDATA (ARR0, ARR[0], 16) },
{ HRDATA (ARR1, ARR[1], 16) },
{ HRDATA (ARR2, ARR[2], 16) },
{ HRDATA (ARR3, ARR[3], 16) },
{ HRDATA (ARR4, ARR[4], 16) },
{ HRDATA (ARR5, ARR[5], 16) },
{ HRDATA (ARR6, ARR[6], 16) },
{ HRDATA (ARR7, ARR[7], 16) },
{ HRDATA (DISABLE, dev_disable, 16), REG_RO },
{ FLDATA (STOP_DEV, stop_dev, 0) },
{ HRDATA (WRU, sim_int_char, 8) },
{ HRDATA (DEBUG, debug_reg, 16) },
{ NULL }
};
MTAB cpu_mod[] = {
{ UNIT_M15, UNIT_M15, "M15", "M15", NULL },
{ UNIT_M15, 0, "M10", "M10", NULL },
{ UNIT_DPF, UNIT_DPF, "DPF", "DPF", NULL },
{ UNIT_DPF, 0, "NODPF", "NODPF", NULL },
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
{ UNIT_MSIZE, 49152, NULL, "48K", &cpu_set_size },
{ UNIT_MSIZE, 65535, NULL, "64K", &cpu_set_size },
{ 0 }
};
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 16, 16, 1, 16, 8,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL
};
t_stat sim_instr (void)
{
extern int32 sim_interval;
register int32 PC, IR;
int32 i, j, carry, zero, op1, op2;
int32 opcode = 0, qbyte = 0, rbyte = 0;
int32 opaddr, addr1, addr2, dlen1, dlen2, r;
int32 int_savelevel = 8, intpri, intlev, intdev, intmask;
int32 devno, devm, devn;
char display[3][9];
int32 val [32];
register t_stat reason;
/* Restore register state */
PC = IAR[level]; /* load local PC */
reason = 0;
/* Main instruction fetch/decode loop */
while (reason == 0) { /* loop until halted */
if (sim_interval <= 0) { /* check clock queue */
if (reason = sim_process_event ()) break;
}
if (int_req) { /* interrupt? */
intpri = 16;
for (i = 0; i < 16; i++) { /* Get highest priority device */
if ((int_req >> i) & 0x01) {
intlev = dev_table[i].level;
if (priority[intlev] < intpri) {
intdev = i;
intpri = priority[intlev];
}
}
}
intmask = 1 << intdev; /* mask is interrupting dev bit */
int_req = ~int_req & intmask; /* Turn off int_req for device */
int_savelevel = level; /* save current level for reset */
level = dev_table[intdev].level; /* get int level from device */
PC = IAR[level]; /* Use int level IAR for new PC */
} /* end interrupt */
if (sim_brk_summ && sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
reason = STOP_IBKPT; /* stop simulation */
break;
}
/* Machine Instruction Execution Here */
if ((debug_reg == 0) && debug_flag == 1) {
fclose(trace);
debug_flag = 0;
}
if (debug_reg) {
if (!debug_flag) {
trace = fopen("trace.log", "w");
debug_flag = 1;
}
}
if (debug_reg & 0x01) {
fprintf(trace, "ARR=%04X XR1=%04X XR2=%04X IAR=%04X ", ARR[level], XR1, XR2, PC);
val[0] = GetMem(PC);
val[1] = GetMem(PC+1);
val[2] = GetMem(PC+2);
val[3] = GetMem(PC+3);
val[4] = GetMem(PC+4);
val[5] = GetMem(PC+5);
fprint_sym(trace, PC, (uint32 *) val, &cpu_unit, SWMASK('M'));
fprintf(trace, "\n");
}
saved_PC = PC;
opaddr = GetMem(PC) & 0xf0; /* fetch addressing mode */
opcode = GetMem(PC) & 0x0f; /* fetch opcode */
PC = (PC + 1) & AMASK;
sim_interval = sim_interval - 1;
qbyte = GetMem(PC) & 0xff; /* fetch qbyte */
PC = (PC + 1) & AMASK;
if (opaddr == 0xf0) { /* Is it command format? */
rbyte = GetMem(PC) & 0xff;
PC = (PC + 1) & AMASK;
switch (opcode) {
case 0x00: /* HPL: Halt Program Level */
for (i = 0; i < 3; i++) {
for (j = 0; j < 9; j++) {
display[i][j] = ' ';
}
}
/* First line */
if (qbyte & 0x04) display[0][2] = '_' ;
if (rbyte & 0x04) display[0][6] = '_' ;
/* Second line */
if (qbyte & 0x08) display[1][1] = '|' ;
if (rbyte & 0x08) display[1][5] = '|' ;
if (qbyte & 0x10) display[1][2] = '_' ;
if (rbyte & 0x10) display[1][6] = '_' ;
if (qbyte & 0x02) display[1][3] = '|' ;
if (rbyte & 0x02) display[1][7] = '|' ;
/* Third line */
if (qbyte & 0x20) display[2][1] = '|' ;
if (rbyte & 0x20) display[2][5] = '|' ;
if (qbyte & 0x40) display[2][2] = '_' ;
if (rbyte & 0x40) display[2][6] = '_' ;
if (qbyte & 0x01) display[2][3] = '|' ;
if (rbyte & 0x01) display[2][7] = '|' ;
/* Print display segment array */
printf("\n\r");
for (i = 0; i < 3; i++) {
for (j = 0; j < 9; j++) {
printf ("%c", display[i][j]);
}
printf ("\n\r");
}
reason = STOP_HALT;
break;
case 0x01: /* APL: Advance Program Level */
devno = (qbyte >> 4) & 0x0f;
devm = (qbyte >> 3) & 0x01;
devn = qbyte & 0x07;
op1 = dev_table[devno].routine(4, devm, devn, rbyte);
if (op1 & 0x01) {
if (cpu_unit.flags & UNIT_DPF) { /* Dual Programming? */
if (level == 8) /* Yes: switch program levels */
level = 9;
else
level = 8;
PC = IAR[level];
} else { /* No: Loop on this inst */
PC = PC - 3;
}
}
reason = (op1 >> 16) & 0xffff;
break;
case 0x02: /* JC: Jump on Condition */
if (condition(qbyte) == 1) {
PC = (PC + rbyte) & AMASK;
}
break;
case 0x03: /* SIO: Start I/O */
devno = (qbyte >> 4) & 0x0f;
devm = (qbyte >> 3) & 0x01;
devn = qbyte & 0x07;
reason = dev_table[devno].routine(0, devm, devn, rbyte);
if (reason == RESET_INTERRUPT) {
reason = SCPE_OK;
IAR[level] = PC;
level = int_savelevel;
PC = IAR[level];
}
break;
default:
reason = STOP_INVOP;
break;
} /* switch (opcode) */
IAR[level] = PC;
continue;
}
/* Not command format: fetch the addresses */
addr1 = (opaddr >> 6) & 3;
addr2 = (opaddr >> 4) & 3;
switch (addr1) {
case 0:
BAR = GetMem(PC) << 8;
PC = (PC + 1) & AMASK;
BAR |=GetMem(PC);
PC = (PC + 1) & AMASK;
break;
case 1:
BAR = GetMem(PC);
BAR = (BAR + XR1) & AMASK;
PC = (PC + 1) & AMASK;
break;
case 2:
BAR = GetMem(PC);
BAR = (BAR + XR2) & AMASK;
PC = (PC + 1) & AMASK;
break;
case 3:
break;
default:
break;
} /* switch (addr1) */
switch (addr2) {
case 0:
AAR = GetMem(PC) << 8;
PC = (PC + 1) & AMASK;
AAR |= GetMem(PC);
PC = (PC + 1) & AMASK;
break;
case 1:
AAR = GetMem(PC);
AAR = (AAR + XR1) & AMASK;
PC = (PC + 1) & AMASK;
break;
case 2:
AAR = GetMem(PC);
AAR = (AAR + XR2) & AMASK;
PC = (PC + 1) & AMASK;
break;
case 3:
break;
default:
break;
} /* switch (addr1) */
switch (opaddr) {
case 0x00:
case 0x10:
case 0x20:
case 0x40:
case 0x50:
case 0x60:
case 0x80:
case 0x90:
case 0xa0:
switch (opcode) {
case 4: /* ZAZ: Zero and Add Zoned */
dlen2 = qbyte & 0x0f;
dlen1 = (qbyte >> 4) & 0xf;
dlen1 += dlen2;
op1 = BAR;
for (i = 0; i < (dlen1+1); i++) {
PutMem(op1, 0xf0);
op1--;
}
r = add_zoned(BAR, dlen1+1, AAR, dlen2+1);
PSR &= 0xF8; /* HJS mod */
switch (r) {
case 0:
PSR |= 0x01;
break;
case 1:
PSR |= 0x02;
break;
case 2:
PSR |= 0x04;
break;
default:
break;
}
break;
case 6: /* AZ: Add Zoned */
dlen2 = qbyte & 0x0f;
dlen1 = (qbyte >> 4) & 0xf;
dlen1 += dlen2;
r = add_zoned(BAR, dlen1+1, AAR, dlen2+1);
PSR &= 0xF0;
switch (r) {
case 0:
PSR |= 0x01;
break;
case 1:
PSR |= 0x02;
break;
case 2:
PSR |= 0x04;
break;
case 3:
PSR |= 0x08;
break;
default:
break;
}
break;
case 7: /* SZ: Subtract Zoned */
dlen2 = qbyte & 0x0f;
dlen1 = (qbyte >> 4) & 0xf;
dlen1 += dlen2;
r = subtract_zoned(BAR, dlen1+1, AAR, dlen2+1);
PSR &= 0xF0;
switch (r) {
case 0:
PSR |= 0x01;
break;
case 1:
PSR |= 0x02;
break;
case 2:
PSR |= 0x04;
break;
case 3:
PSR |= 0x08;
break;
default:
break;
}
break;
case 8: /* MVX: Move Hex */
op1 = GetMem(BAR);
op2 = GetMem(AAR);
switch (qbyte) {
case 0: /* Zone to zone */
op1 = (op1 & 0x0F) | (op2 & 0xF0);
break;
case 1: /* Numeric to zone */
op1 = (op1 & 0x0F) | (op2 << 4);
break;
case 2: /* Zone to numeric */
op1 = (op1 & 0xF0) | (op2 >> 4);
break;
case 3: /* Numeric to numeric */
op1 = (op1 & 0xF0) | (op2 & 0x0F);
break;
default:
reason = STOP_INVQ;
break;
}
PutMem(BAR, op1);
break;
case 0xa: /* ED: Edit */
zero = 1;
PSR &= 0xF8;
IR = GetMem(AAR);
if ((IR & 0xf0) != 0xF0)
PSR |= 0x02;
else
PSR |= 0x04;
while (qbyte > -1) {
op2 = GetMem(AAR);
op1 = GetMem(BAR);
if (op1 == 0x20) {
op2 |= 0xf0;
PutMem(BAR, op2);
AAR--;
if (op2 != 0xF0) zero = 0;
}
BAR--;
qbyte--;
}
if (zero)
PSR |= 0x01;
break;
case 0xb: /* ITC: Insert and Test Chars */
op2 = GetMem(AAR);
while (qbyte > -1) {
op1 = GetMem(BAR);
if (op1 >= 0xF1 && op1 <= 0xF9)
break;
PutMem(BAR, op2);
BAR++;
qbyte--;
}
ARR[level] = BAR;
break;
case 0xc: /* MVC: Move Characters */
while (qbyte > -1) {
PutMem(BAR, GetMem(AAR));
BAR--;
AAR--;
qbyte--;
}
break;
case 0xd: /* CLC: Compare Characters */
PSR &= 0xF8;
i = BAR = BAR - qbyte;
j = AAR = AAR - qbyte;
while (qbyte > -1) {
if (GetMem(i) > GetMem(j)) {
PSR |= 0x04;
break;
}
if (GetMem(i) < GetMem(j)) {
PSR |= 0x02;
break;
}
i++;
j++;
qbyte--;
}
if (qbyte == -1)
PSR |= 0x01;
break;
case 0xe: /* ALC: Add Logical Characters */
carry = 0;
zero = 1;
while (qbyte > -1) {
IR = GetMem(BAR) + GetMem(AAR) + carry;
if (IR & 0x100)
carry = 1;
else
carry = 0;
if ((IR & 0xFF) != 0) zero = 0; /* HJS mod */
PutMem(BAR,(IR & 0xFF));
BAR--;
AAR--;
qbyte--;
}
PSR &= 0xD8;
if (zero)
PSR |= 0x01; /* Equal */
if (!zero && !carry)
PSR |= 0x02; /* Low */
if (!zero && carry)
PSR |= 0x04; /* High */
if (carry)
PSR |= 0x20; /* Overflow */
break;
case 0xf: /* SLC: Subtract Logical Characters */
carry = 1;
zero = 1;
while (qbyte > -1) {
IR = GetMem(BAR) + (0xFF - GetMem(AAR)) + carry;
if (IR & 0x100)
carry = 1;
else
carry = 0;
if ((IR & 0xFF) != 0) zero = 0; /* HJS mod */
PutMem(BAR,(IR & 0xFF));
BAR--;
AAR--;
qbyte--;
}
PSR &= 0xF8;
if (zero)
PSR |= 0x01; /* Equal */
if (!zero && !carry)
PSR |= 0x02; /* Low */
if (!zero && carry)
PSR |= 0x04; /* High */
break;
default:
reason = STOP_INVOP;
break;
}
IAR[level] = PC;
continue;
break;
case 0x30:
case 0x70:
case 0xb0:
switch (opcode) {
case 0: /* SNS: Sense I/O */
devno = (qbyte >> 4) & 0x0f;
devm = (qbyte >> 3) & 0x01;
devn = qbyte & 0x07;
i = dev_table[devno].routine(3, devm, devn, rbyte);
PutMem(BAR, i & 0xff);
BAR--;
PutMem(BAR, (i >> 8) & 0xff);
reason = (i >> 16) & 0xffff;
break;
case 1: /* LIO: Load I/O */
devno = (qbyte >> 4) & 0x0f;
devm = (qbyte >> 3) & 0x01;
devn = qbyte & 0x07;
op1 = GetMem(BAR);
BAR--;
op1 |= (GetMem(BAR) << 8) & 0xff00;
reason = dev_table[devno].routine(1, devm, devn, op1);
break;
case 4: /* ST: Store Register */
switch (qbyte) {
case 0x01:
PutMem(BAR, XR1 & 0xff);
BAR--;
PutMem(BAR, (XR1 >> 8) & 0xff);
break;
case 0x02:
PutMem(BAR, XR2 & 0xff);
BAR--;
PutMem(BAR, (XR2 >> 8) & 0xff);
break;
case 0x04:
PutMem(BAR, PSR & 0xFF);
BAR--;
PutMem(BAR, 0); /* LCRR, not imp. */
break;
case 0x08:
PutMem(BAR, ARR[level] & 0xff);
BAR--;
PutMem(BAR, (ARR[level] >> 8) & 0xff);
break;
case 0x10:
PutMem(BAR, IAR[level] & 0xff);
BAR--;
PutMem(BAR, (IAR[level] >> 8) & 0xff);
break;
case 0x20:
PutMem(BAR, IAR[8] & 0xff);
BAR--;
PutMem(BAR, (IAR[8] >> 8) & 0xff);
break;
case 0x40:
PutMem(BAR, IAR[9] & 0xff);
BAR--;
PutMem(BAR, (IAR[9] >> 8) & 0xff);
break;
case 0x80:
PutMem(BAR, IAR[0] & 0xff);
BAR--;
PutMem(BAR, (IAR[0] >> 8) & 0xff);
break;
case 0x81:
PutMem(BAR, IAR[7] & 0xff);
BAR--;
PutMem(BAR, (IAR[7] >> 8) & 0xff);
break;
case 0x82:
PutMem(BAR, IAR[6] & 0xff);
BAR--;
PutMem(BAR, (IAR[6] >> 8) & 0xff);
break;
case 0x84:
PutMem(BAR, IAR[5] & 0xff);
BAR--;
PutMem(BAR, (IAR[5] >> 8) & 0xff);
break;
case 0x88:
PutMem(BAR, IAR[4] & 0xff);
BAR--;
PutMem(BAR, (IAR[4] >> 8) & 0xff);
break;
case 0x90:
PutMem(BAR, IAR[3] & 0xff);
BAR--;
PutMem(BAR, (IAR[3] >> 8) & 0xff);
break;
case 0xA0:
PutMem(BAR, IAR[2] & 0xff);
BAR--;
PutMem(BAR, (IAR[2] >> 8) & 0xff);
break;
case 0xC0:
PutMem(BAR, IAR[1] & 0xff);
BAR--;
PutMem(BAR, (IAR[1] >> 8) & 0xff);
break;
default:
reason = STOP_INVQ;
break;
}
break;
case 5: /* L: Load Register */
switch (qbyte) {
case 0x01:
XR1 = GetMem(BAR) & 0xff;
BAR--;
XR1 |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0x02:
XR2 = GetMem(BAR) & 0xff;
BAR--;
XR2 |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0x04:
PSR = GetMem(BAR) & 0xff;
BAR--;
break;
case 0x08:
ARR[level] = GetMem(BAR) & 0xff;
BAR--;
ARR[level] |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0x10:
IAR[level] = GetMem(BAR) & 0xff;
BAR--;
IAR[level] |= (GetMem(BAR) << 8) & 0xff00;
PC = IAR[level];
break;
case 0x20:
IAR[8] = GetMem(BAR) & 0xff;
BAR--;
IAR[8] |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0x40:
IAR[9] = GetMem(BAR) & 0xff;
BAR--;
IAR[9] |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0x80:
IAR[0] = GetMem(BAR) & 0xff;
BAR--;
IAR[0] |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0x81:
IAR[7] = GetMem(BAR) & 0xff;
BAR--;
IAR[7] |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0x82:
IAR[6] = GetMem(BAR) & 0xff;
BAR--;
IAR[6] |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0x84:
IAR[5] = GetMem(BAR) & 0xff;
BAR--;
IAR[5] |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0x88:
IAR[4] = GetMem(BAR) & 0xff;
BAR--;
IAR[4] |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0x90:
IAR[3] = GetMem(BAR) & 0xff;
BAR--;
IAR[3] |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0xA0:
IAR[2] = GetMem(BAR) & 0xff;
BAR--;
IAR[2] |= (GetMem(BAR) << 8) & 0xff00;
break;
case 0xC0:
IAR[1] = GetMem(BAR) & 0xff;
BAR--;
IAR[1] |= (GetMem(BAR) << 8) & 0xff00;
break;
default:
reason = STOP_INVQ;
break;
}
break;
case 6: /* A: Add to Register */
IR = GetMem(BAR) & 0x00ff;
BAR--;
IR |= (GetMem(BAR) << 8) & 0xff00;
switch (qbyte) {
case 0x01:
IR += XR1;
XR1 = IR & AMASK;
break;
case 0x02:
IR += XR2;
XR2 = IR & AMASK;
break;
case 0x04:
IR += PSR;
PSR = IR & AMASK;
break;
case 0x08:
IR += ARR[level];
ARR[level] = IR & AMASK;
break;
case 0x10:
IR += IAR[level];
IAR[level] = IR & AMASK;
break;
case 0x20:
IR += IAR[8];
IAR[8] = IR & AMASK;
break;
case 0x40:
IR += IAR[9];
IAR[9] = IR & AMASK;
break;
case 0x80:
IR += IAR[0];
IAR[0] = IR & AMASK;
break;
case 0x81:
IR += IAR[7];
IAR[7] = IR & AMASK;
break;
case 0x82:
IR += IAR[6];
IAR[6] = IR & AMASK;
break;
case 0x84:
IR += IAR[5];
IAR[5] = IR & AMASK;
break;
case 0x88:
IR += IAR[4];
IAR[4] = IR & AMASK;
break;
case 0x90:
IR += IAR[3];
IAR[3] = IR & AMASK;
break;
case 0xA0:
IR += IAR[2];
IAR[2] = IR & AMASK;
break;
case 0xC0:
IR += IAR[1];
IAR[1] = IR & AMASK;
break;
default:
reason = STOP_INVQ;
break;
}
PSR &= 0xD8;
if ((IR & 0xffff) == 0)
PSR |= 0x01; /* Zero */
if ((IR & 0xffff) != 0 && !(IR & 0x10000))
PSR |= 0x02; /* Low */
if ((IR & 0xffff) != 0 && (IR & 0x10000))
PSR |= 0x04; /* High */
if ((IR & 0x10000))
PSR |= 0x20; /* Bin overflow */
break;
case 8: /* TBN: Test Bits On */
IR = GetMem(BAR);
PSR &= 0xFF;
if ((IR & qbyte) != qbyte)
PSR |= 0x10;
break;
case 9: /* TBF: Test Bits Off */
IR = GetMem(BAR);
PSR &= 0xFF;
if ((IR & qbyte))
PSR |= 0x10;
break;
case 0xa: /* SBN: Set Bits On */
IR = GetMem(BAR);
IR |= qbyte;
PutMem(BAR, IR);
break;
case 0xb: /* SBF: Set Bits Off */
IR = GetMem(BAR);
IR &= ~qbyte;
PutMem(BAR, IR);
break;
case 0xc: /* MVI: Move Immediate */
PutMem(BAR, qbyte);
break;
case 0xd: /* CLI: Compare Immediate */
PSR = compare(GetMem(BAR), qbyte, PSR);
break;
default:
reason = STOP_INVOP;
break;
}
IAR[level] = PC;
continue;
break;
case 0xc0:
case 0xd0:
case 0xe0:
switch (opcode) {
case 0: /* BC: Branch on Condition */
ARR[level] = AAR & AMASK;
if (condition(qbyte) == 1) {
IR = ARR[level];
ARR[level] = PC & AMASK;
PC = IR;
}
break;
case 1: /* TIO: Test I/O */
devno = (qbyte >> 4) & 0x0f;
devm = (qbyte >> 3) & 0x01;
devn = qbyte & 0x07;
op1 = dev_table[devno].routine(2, devm, devn, rbyte);
if (op1 & 0x01) {
ARR[level] = AAR & AMASK;
IR = ARR[level];
ARR[level] = PC & AMASK;
PC = IR;
}
reason = (op1 >> 16) & 0xffff;
break;
case 2: /* LA: Load Address */
switch (qbyte) {
case 1:
XR1 = AAR;
break;
case 2:
XR2 = AAR;
break;
default:
reason = STOP_INVQ;
break;
}
break;
default:
reason = STOP_INVOP;
break;
} /* switch (opcode) */
IAR[level] = PC;
continue;
default:
reason = STOP_INVOP;
break;
} /* switch (opaddr) */
} /* end while (reason == 0) */
/* Simulation halted */
saved_PC = PC;
return reason;
}
/* On models 4-12, these memory functions could be inline, but
on a model 15 with ATU address mapping must be performed so
they are in functions here for future expansion.
*/
/* Fetch a byte from memory */
int32 GetMem(int32 addr)
{
return M[addr] & 0xff;
}
/* Place a byte in memory */
int32 PutMem(int32 addr, int32 data)
{
M[addr] = data & 0xff;
return 0;
}
/* Check the condition register against the qbyte and return 1 if true */
int32 condition(int32 qbyte)
{
int32 r = 0, t, q;
t = (qbyte & 0xf0) >> 4;
q = qbyte & 0x0f;
if (qbyte & 0x80) { /* True if any condition tested = 1*/
if (((qbyte & 0x3f) & PSR) != 0) r = 1;
} else { /* True if all conditions tested = 0 */
if (((qbyte & 0x3f) & PSR) == 0) r = 1;
}
/* these bits reset by a test */
if (qbyte & 0x10)
PSR &= 0xEF; /* Reset test false if used */
if (qbyte & 0x08)
PSR &= 0xF7; /* Reset decimal overflow if tested */
if (qbyte == 0x00)
r = 1; /* unconditional branch */
if (qbyte == 0x80)
r = 0; /* force no branch */
if (t >=0 && t < 8 && (q == 7 || q == 0xf))
r = 0; /* no-op */
if (t > 7 && t < 0x10 && (q == 7 || q == 0xf))
r = 1; /* Force branch */
return (r);
}
/* Given operand 1 and operand 2, compares the two and returns
the System/3 condition register bits appropriately, given the
condition register initial state in parameter 3
*/
int32 compare(int32 byte1, int32 byte2, int32 cond)
{
int32 r;
r = cond & 0xF8; /* mask off all but unaffected bits 2,3,4 */
if (byte1 == byte2)
r |= 0x01; /* set equal bit */
if (byte1 < byte2)
r |= 0x02; /* set less-than bit */
if (byte1 > byte2)
r |= 0x04; /* set greater than bit */
return r;
}
/*-------------------------------------------------------------------*/
/* Add two zoned decimal operands */
/* */
/* Input: */
/* addr1 Logical address of packed decimal storage operand 1 */
/* len1 Length minus one of storage operand 1 (range 0-15) */
/* addr2 Logical address of packed decimal storage operand 2 */
/* len2 Length minus one of storage operand 2 (range 0-15) */
/* Output: */
/* The return value is the condition code: */
/* 0=result zero, 1=result -ve, 2=result +ve, 3=overflow */
/* */
/* A program check may be generated if either logical address */
/* causes an addressing, translation, or fetch protection */
/* exception, or if either operand causes a data exception */
/* because of invalid decimal digits or sign, or if the */
/* first operand is store protected. Depending on the PSW */
/* program mask, decimal overflow may cause a program check. */
/*-------------------------------------------------------------------*/
int32 add_zoned (int32 addr1, int32 len1, int32 addr2, int32 len2)
{
int cc; /* Condition code */
uint8 dec1[MAX_DECIMAL_DIGITS]; /* Work area for operand 1 */
uint8 dec2[MAX_DECIMAL_DIGITS]; /* Work area for operand 2 */
uint8 dec3[MAX_DECIMAL_DIGITS]; /* Work area for result */
int count1, count2, count3; /* Significant digit counters*/
int sign1, sign2, sign3; /* Sign of operands & result */
/* Load operands into work areas */
load_decimal (addr1, len1, dec1, &count1, &sign1);
load_decimal (addr2, len2, dec2, &count2, &sign2);
/* Add or subtract operand values */
if (count2 == 0)
{
/* If second operand is zero then result is first operand */
memcpy (dec3, dec1, MAX_DECIMAL_DIGITS);
count3 = count1;
sign3 = sign1;
}
else if (count1 == 0)
{
/* If first operand is zero then result is second operand */
memcpy (dec3, dec2, MAX_DECIMAL_DIGITS);
count3 = count2;
sign3 = sign2;
}
else if (sign1 == sign2)
{
/* If signs are equal then add operands */
add_decimal (dec1, dec2, dec3, &count3);
sign3 = sign1;
}
else
{
/* If signs are opposite then subtract operands */
subtract_decimal (dec1, dec2, dec3, &count3, &sign3);
if (sign1 < 0) sign3 = -sign3;
}
/* Set condition code */
cc = (count3 == 0) ? 0 : (sign3 < 1) ? 1 : 2;
/* Overflow if result exceeds first operand length */
if (count3 > len1)
cc = 3;
/* Set positive sign if result is zero */
if (count3 == 0)
sign3 = 1;
/* Store result into first operand location */
store_decimal (addr1, len1, dec3, sign3);
/* Return condition code */
return cc;
} /* end function add_packed */
/*-------------------------------------------------------------------*/
/* Subtract two zoned decimal operands */
/* */
/* Input: */
/* addr1 Logical address of packed decimal storage operand 1 */
/* len1 Length minus one of storage operand 1 (range 0-15) */
/* addr2 Logical address of packed decimal storage operand 2 */
/* len2 Length minus one of storage operand 2 (range 0-15) */
/* Output: */
/* The return value is the condition code: */
/* 0=result zero, 1=result -ve, 2=result +ve, 3=overflow */
/* */
/* A program check may be generated if either logical address */
/* causes an addressing, translation, or fetch protection */
/* exception, or if either operand causes a data exception */
/* because of invalid decimal digits or sign, or if the */
/* first operand is store protected. Depending on the PSW */
/* program mask, decimal overflow may cause a program check. */
/*-------------------------------------------------------------------*/
int32 subtract_zoned (int32 addr1, int32 len1, int32 addr2, int32 len2)
{
int cc; /* Condition code */
uint8 dec1[MAX_DECIMAL_DIGITS]; /* Work area for operand 1 */
uint8 dec2[MAX_DECIMAL_DIGITS]; /* Work area for operand 2 */
uint8 dec3[MAX_DECIMAL_DIGITS]; /* Work area for result */
int count1, count2, count3; /* Significant digit counters*/
int sign1, sign2, sign3; /* Sign of operands & result */
/* Load operands into work areas */
load_decimal (addr1, len1, dec1, &count1, &sign1);
load_decimal (addr2, len2, dec2, &count2, &sign2);
/* Add or subtract operand values */
if (count2 == 0)
{
/* If second operand is zero then result is first operand */
memcpy (dec3, dec1, MAX_DECIMAL_DIGITS);
count3 = count1;
sign3 = sign1;
}
else if (count1 == 0)
{
/* If first operand is zero then result is -second operand */
memcpy (dec3, dec2, MAX_DECIMAL_DIGITS);
count3 = count2;
sign3 = -sign2;
}
else if (sign1 != sign2)
{
/* If signs are opposite then add operands */
add_decimal (dec1, dec2, dec3, &count3);
sign3 = sign1;
}
else
{
/* If signs are equal then subtract operands */
subtract_decimal (dec1, dec2, dec3, &count3, &sign3);
if (sign1 < 0) sign3 = -sign3;
}
/* Set condition code */
cc = (count3 == 0) ? 0 : (sign3 < 1) ? 1 : 2;
/* Overflow if result exceeds first operand length */
if (count3 > len1)
cc = 3;
/* Set positive sign if result is zero */
if (count3 == 0)
sign3 = 1;
/* Store result into first operand location */
store_decimal (addr1, len1, dec3, sign3);
/* Return condition code */
return cc;
} /* end function subtract_packed */
/*-------------------------------------------------------------------*/
/* Add two decimal byte strings as unsigned decimal numbers */
/* */
/* Input: */
/* dec1 A 31-byte area containing the decimal digits of */
/* the first operand. Each byte contains one decimal */
/* digit in the low-order 4 bits of the byte. */
/* dec2 A 31-byte area containing the decimal digits of */
/* the second operand. Each byte contains one decimal */
/* digit in the low-order 4 bits of the byte. */
/* Output: */
/* result Points to a 31-byte area to contain the result */
/* digits. One decimal digit is placed in the low-order */
/* 4 bits of each byte. */
/* count Points to an integer to receive the number of */
/* digits in the result excluding leading zeroes. */
/* This field is set to zero if the result is all zero, */
/* or to MAX_DECIMAL_DIGITS+1 if overflow occurred. */
/*-------------------------------------------------------------------*/
static void add_decimal (uint8 *dec1, uint8 *dec2, uint8 *result, int32 *count)
{
int d; /* Decimal digit */
int i; /* Array subscript */
int n = 0; /* Significant digit counter */
int carry = 0; /* Carry indicator */
/* Add digits from right to left */
for (i = MAX_DECIMAL_DIGITS - 1; i >= 0; i--)
{
/* Add digits from first and second operands */
d = dec1[i] + dec2[i] + carry;
/* Check for carry into next digit */
if (d > 9) {
d -= 10;
carry = 1;
} else {
carry = 0;
}
/* Check for significant digit */
if (d != 0)
n = MAX_DECIMAL_DIGITS - i;
/* Store digit in result */
result[i] = d;
} /* end for */
/* Check for carry out of leftmost digit */
if (carry)
n = MAX_DECIMAL_DIGITS + 1;
/* Return significant digit counter */
*count = n;
} /* end function add_decimal */
/*-------------------------------------------------------------------*/
/* Subtract two decimal byte strings as unsigned decimal numbers */
/* */
/* Input: */
/* dec1 A 31-byte area containing the decimal digits of */
/* the first operand. Each byte contains one decimal */
/* digit in the low-order 4 bits of the byte. */
/* dec2 A 31-byte area containing the decimal digits of */
/* the second operand. Each byte contains one decimal */
/* digit in the low-order 4 bits of the byte. */
/* Output: */
/* result Points to a 31-byte area to contain the result */
/* digits. One decimal digit is placed in the low-order */
/* 4 bits of each byte. */
/* count Points to an integer to receive the number of */
/* digits in the result excluding leading zeroes. */
/* This field is set to zero if the result is all zero. */
/* sign -1 if the result is negative (operand2 > operand1) */
/* +1 if the result is positive (operand2 <= operand1) */
/*-------------------------------------------------------------------*/
static void subtract_decimal (uint8 *dec1, uint8 *dec2, uint8 *result, int *count, int *sign)
{
int d; /* Decimal digit */
int i; /* Array subscript */
int n = 0; /* Significant digit counter */
int borrow = 0; /* Borrow indicator */
int rc; /* Return code */
uint8 *higher; /* -> Higher value operand */
uint8 *lower; /* -> Lower value operand */
/* Compare digits to find which operand has higher numeric value */
rc = memcmp (dec1, dec2, MAX_DECIMAL_DIGITS);
/* Return positive zero result if both operands are equal */
if (rc == 0) {
memset (result, 0, MAX_DECIMAL_DIGITS);
*count = 0;
*sign = +1;
return;
}
/* Point to higher and lower value operands and set sign */
if (rc > 0) {
higher = dec1;
lower = dec2;
*sign = +1;
} else {
lower = dec1;
higher = dec2;
*sign = -1;
}
/* Subtract digits from right to left */
for (i = MAX_DECIMAL_DIGITS - 1; i >= 0; i--)
{
/* Subtract lower operand digit from higher operand digit */
d = higher[i] - lower[i] - borrow;
/* Check for borrow from next digit */
if (d < 0) {
d += 10;
borrow = 1;
} else {
borrow = 0;
}
/* Check for significant digit */
if (d != 0)
n = MAX_DECIMAL_DIGITS - i;
/* Store digit in result */
result[i] = d;
} /* end for */
/* Return significant digit counter */
*count = n;
} /* end function subtract_decimal */
/*-------------------------------------------------------------------*/
/* Load a zoned decimal storage operand into a decimal byte string */
/* */
/* Input: */
/* addr Logical address of zoned decimal storage operand */
/* len Length minus one of storage operand (range 0-15) */
/* Output: */
/* result Points to a 31-byte area into which the decimal */
/* digits are loaded. One decimal digit is loaded */
/* into the low-order 4 bits of each byte, and the */
/* result is padded to the left with high-order zeroes */
/* if the storage operand contains less than 31 digits. */
/* count Points to an integer to receive the number of */
/* digits in the result excluding leading zeroes. */
/* This field is set to zero if the result is all zero. */
/* sign Points to an integer which will be set to -1 if a */
/* negative sign was loaded from the operand, or +1 if */
/* a positive sign was loaded from the operand. */
/* */
/* A program check may be generated if the logical address */
/* causes an addressing, translation, or fetch protection */
/* exception, or if the operand causes a data exception */
/* because of invalid decimal digits or sign. */
/*-------------------------------------------------------------------*/
static void load_decimal (int32 addr, int32 len, uint8 *result, int32 *count, int32 *sign)
{
int h; /* Hexadecimal digit */
int i, j; /* Array subscripts */
int n; /* Significant digit counter */
if ((GetMem(addr) & 0xf0) == 0xD0)
*sign = -1;
else
*sign = 1;
j = len;
for (i = MAX_DECIMAL_DIGITS; i > -1; i--) {
if (j) {
h = GetMem(addr) & 0x0f;
addr--;
j--;
} else {
h = 0;
}
result [i-1] = h;
if (h > 0) n = i;
}
*count = 32 - n;
} /* end function load_decimal */
/*-------------------------------------------------------------------*/
/* Store decimal byte string into packed decimal storage operand */
/* */
/* Input: */
/* addr Logical address of packed decimal storage operand */
/* len Length minus one of storage operand (range 0-15) */
/* dec A 31-byte area containing the decimal digits to be */
/* stored. Each byte contains one decimal digit in */
/* the low-order 4 bits of the byte. */
/* sign -1 if a negative sign is to be stored, or +1 if a */
/* positive sign is to be stored. */
/* */
/* A program check may be generated if the logical address */
/* causes an addressing, translation, or protection exception. */
/*-------------------------------------------------------------------*/
static void store_decimal (int32 addr, int32 len, uint8 *dec, int sign)
{
int i, j, a; /* Array subscripts */
j = len;
a = addr;
for (i = MAX_DECIMAL_DIGITS; i > -1; i--) {
if (j) {
PutMem(a, (dec[i-1] | 0xf0));
a--;
j--;
} else {
break;
}
}
if (sign == -1) {
PutMem(addr, (GetMem(addr) & 0x0f));
PutMem(addr, (GetMem(addr) | 0xf0));
}
} /* end function store_decimal */
/* CPU Device Control */
int32 cpu (int32 op, int32 m, int32 n, int32 data)
{
int32 iodata = 0;
switch (op) {
case 0x00: /* Start IO */
return SCPE_OK;
case 0x01: /* LIO */
return SCPE_OK;
case 0x02: /* TIO */
break;
case 0x03: /* SNS */
/* SNS CPU gets the data switches */
iodata = SR;
break;
case 0x04: /* APL */
break;
default:
break;
}
return ((SCPE_OK << 16) | iodata);
}
/* Null device */
int32 nulldev (int32 opcode, int32 m, int32 n, int32 data)
{
if (opcode == 1)
return SCPE_OK; /* Ok to LIO unconfigured devices? */
return STOP_INVDEV;
}
/* Reset routine */
t_stat cpu_reset (DEVICE *dptr)
{
int_req = 0;
level = 8;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
if (vptr != NULL) *vptr = M[addr] & 0xff;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
M[addr] = val & 0xff;
return SCPE_OK;
}
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
uint32 i;
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0))
return SCPE_ARG;
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
return SCPE_OK;
}
t_stat cpu_boot (int32 unitno, DEVICE *dptr)
{
level = 8;
IAR[8] = 0;
return SCPE_OK;
}
|