File: sds_cpu.c

package info (click to toggle)
simh 3.8.1-6.3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,672 kB
  • sloc: ansic: 209,820; makefile: 326
file content (1702 lines) | stat: -rw-r--r-- 65,287 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
/* sds_cpu.c: SDS 940 CPU simulator

   Copyright (c) 2001-2008, Robert M. Supnik

   Permission is hereby granted, free of charge, to any person obtaining a
   copy of this software and associated documentation files (the "Software"),
   to deal in the Software without restriction, including without limitation
   the rights to use, copy, modify, merge, publish, distribute, sublicense,
   and/or sell copies of the Software, and to permit persons to whom the
   Software is furnished to do so, subject to the following conditions:

   The above copyright notice and this permission notice shall be included in
   all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
   ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
   IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

   Except as contained in this notice, the name of Robert M Supnik shall not be
   used in advertising or otherwise to promote the sale, use or other dealings
   in this Software without prior written authorization from Robert M Supnik.

   cpu          central processor
   rtc          real time clock

   28-Apr-07    RMS     Removed clock initialization
   29-Dec-06    RMS     Fixed breakpoint variable declarations
   16-Aug-05    RMS     Fixed C++ declaration and cast problems
   07-Nov-04    RMS     Added instruction history
   01-Mar-03    RMS     Added SET/SHOW RTC FREQ support

   The system state for the SDS 940 is:

   A<0:23>              A register
   B<0:23>              B register
   X<0:23>              X (index) register
   OV                   overflow indicator
   P<0:13>              program counter
   nml_mode             compatible (1) vs 940 (0) mode
   usr_mode             user (1) vs monitor (0) mode
   RL1<0:23>            user map low
   RL2<0:23>            user map high
   RL4<12:23>           monitor map high
   EM2<0:2>             memory extension, block 2
   EM3<0:2>             memory extension, block 3
   bpt                  breakpoint switches

   The SDS 940 has three instruction format -- memory reference, register change,
   and I/O.  The memory reference format is:

     0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 23 23
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   | U| X| P|      opcode     |IN|               address                   |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

    U                   force user mode addressing (monitor mode only)
    X                   indexed
    P                   opcode is a programmed operator
    opcode              opcode
    IN                  indirect addressing
    address             virtual address

   Virtual addresses are 14b.  Depending on the operating mode (normal, user,
   or monitor), virtual addresses are translated to 15b or 16b physical addresses.

    normal              virtual [000000:017777] are unmapped
                        EM2 and EM3 extend virtual [020000:037777] to 15b
    user                RL1 and RL2 map virtual [000000:037777] to 16b
    monitor             virtual [000000:017777] are unmapped
                        EM2 extends virtual [020000:027777] to 15b
                        RL4 maps virtual [030000:037777] to 16b

   The register change format is:

     0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 23 23
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   | 0| m| 0|      opcode     |   microcoded register change instruction   |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

   The I/O format is:

     0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 23 23
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
   | 0|CH| 0|      opcode     |mode |             I/O function             |
   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

   This routine is the instruction decode routine for the SDS 940.
   It is called from the simulator control program to execute
   instructions in simulated memory, starting at the simulated PC.
   It runs until 'reason' is set non-zero.

   General notes:

   1. Reasons to stop.  The simulator can be stopped by:

        HALT instruction
        breakpoint encountered
        invalid instruction and stop_invins flag set
        invalid I/O device and stop_invdev flag set
        invalid I/O operation and stop_inviop flag set
        I/O error in I/O simulator
        indirect loop exceeding limit
        EXU loop exceeding limit
        mapping exception in interrupt or trap instruction

   2. Interrupts.  The interrupt structure consists of the following:

        int_req         interrupt requests (low bit reserved)
        api_lvl         active interrupt levels
        int_reqhi       highest interrupt request
        api_lvlhi       highest interrupt service (0 if none)
        ion             interrupt enable
        ion_defer       interrupt defer (one instruction)

   3. Channels.  The SDS 940 has a channel-based I/O structure.  Each
      channel is represented by a set of registers.  Channels test the
      I/O transfer requests from devices, which are kept in xfr_req.

   4. Non-existent memory.  On the SDS 940, reads to non-existent memory
      return zero, and writes are ignored.  In the simulator, the
      largest possible memory is instantiated and initialized to zero.
      Thus, only writes need be checked against actual memory size.

   5. Adding I/O devices.  These modules must be modified:

        sds_defs.h      add interrupt, transfer, and alert definitions
        sds_io.c        add alert dispatches aldisp
        sds_sys.c       add pointer to data structures to sim_devices
*/

#include "sds_defs.h"

#define PCQ_SIZE        64                              /* must be 2**n */
#define PCQ_MASK        (PCQ_SIZE - 1)
#define PCQ_ENTRY       pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = pc
#define UNIT_V_MSIZE    (UNIT_V_GENIE + 1)              /* dummy mask */
#define UNIT_MSIZE      (1 << UNIT_V_MSIZE)

#define HIST_XCT        1                               /* instruction */
#define HIST_INT        2                               /* interrupt cycle */
#define HIST_TRP        3                               /* trap cycle */
#define HIST_MIN        64
#define HIST_MAX        65536
#define HIST_NOEA       0x40000000

typedef struct {
    uint32              typ;
    uint32              pc;
    uint32              ir;
    uint32              a;
    uint32              b;
    uint32              x;
    uint32              ea;
    } InstHistory;

uint32 M[MAXMEMSIZE] = { 0 };                           /* memory */
uint32 A, B, X;                                         /* registers */
uint32 P;                                               /* program counter */
uint32 OV;                                              /* overflow */
uint32 xfr_req = 0;                                     /* xfr req */
uint32 ion = 0;                                         /* int enable */
uint32 ion_defer = 0;                                   /* int defer */
uint32 int_req = 0;                                     /* int requests */
uint32 int_reqhi = 0;                                   /* highest int request */
uint32 api_lvl = 0;                                     /* api active */
uint32 api_lvlhi = 0;                                   /* highest api active */
t_bool chan_req;                                        /* chan request */
uint32 nml_mode = 1;                                    /* normal mode */
uint32 usr_mode = 0;                                    /* user mode */
uint32 mon_usr_trap = 0;                                /* mon-user trap */
uint32 EM2 = 2, EM3 = 3;                                /* extension registers */
uint32 RL1, RL2, RL4;                                   /* relocation maps */
uint32 bpt;                                             /* breakpoint switches */
uint32 alert;                                           /* alert dispatch */
uint32 em2_dyn, em3_dyn;                                /* extensions, dynamic */
uint32 usr_map[8];                                      /* user map, dynamic */
uint32 mon_map[8];                                      /* mon map, dynamic */
int32 ind_lim = 32;                                     /* indirect limit */
int32 exu_lim = 32;                                     /* EXU limit */
int32 cpu_genie = 0;                                    /* Genie flag */
int32 cpu_astop = 0;                                    /* address stop */
int32 stop_invins = 1;                                  /* stop inv inst */
int32 stop_invdev = 1;                                  /* stop inv dev */
int32 stop_inviop = 1;                                  /* stop inv io op */
uint16 pcq[PCQ_SIZE] = { 0 };                           /* PC queue */
int32 pcq_p = 0;                                        /* PC queue ptr */
REG *pcq_r = NULL;                                      /* PC queue reg ptr */
int32 hst_p = 0;                                        /* history pointer */
int32 hst_lnt = 0;                                      /* history length */
InstHistory *hst = NULL;                                /* instruction history */
int32 rtc_pie = 0;                                      /* rtc pulse ie */
int32 rtc_tps = 60;                                     /* rtc ticks/sec */

extern int32 sim_int_char;
extern uint32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */

t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_type (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_hist (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, void *desc);
t_stat Ea (uint32 wd, uint32 *va);
t_stat EaSh (uint32 wd, uint32 *va);
t_stat Read (uint32 va, uint32 *dat);
t_stat Write (uint32 va, uint32 dat);
void set_dyn_map (void);
uint32 api_findreq (void);
void api_dismiss (void);
uint32 Add24 (uint32 s1, uint32 s2, uint32 cin);
uint32 AddM24 (uint32 s1, uint32 s2);
void Mul48 (uint32 mplc, uint32 mplr);
void Div48 (uint32 dvdh, uint32 dvdl, uint32 dvr);
void RotR48 (uint32 sc);
void ShfR48 (uint32 sc, uint32 sgn);
t_stat one_inst (uint32 inst, uint32 pc, uint32 mode);
void inst_hist (uint32 inst, uint32 pc, uint32 typ);
t_stat rtc_inst (uint32 inst);
t_stat rtc_svc (UNIT *uptr);
t_stat rtc_reset (DEVICE *dptr);
t_stat rtc_set_freq (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat rtc_show_freq (FILE *st, UNIT *uptr, int32 val, void *desc);

extern t_bool io_init (void);
extern t_stat op_wyim (uint32 inst, uint32 *dat);
extern t_stat op_miwy (uint32 inst, uint32 dat);
extern t_stat op_pin (uint32 *dat);
extern t_stat op_pot (uint32 dat);
extern t_stat op_eomd (uint32 inst);
extern t_stat op_sks (uint32 inst, uint32 *skp);

/* CPU data structures

   cpu_dev      CPU device descriptor
   cpu_unit     CPU unit descriptor
   cpu_reg      CPU register list
   cpu_mod      CPU modifiers list
*/

UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK, MAXMEMSIZE) };

REG cpu_reg[] = {
    { ORDATA (P, P, 14) },
    { ORDATA (A, A, 24) },
    { ORDATA (B, B, 24) },
    { ORDATA (X, X, 24) },
    { FLDATA (OV, OV, 0) },
    { ORDATA (EM2, EM2, 3) },
    { ORDATA (EM3, EM3, 3) },
    { ORDATA (RL1, RL1, 24) },
    { ORDATA (RL2, RL2, 24) },
    { ORDATA (RL4, RL4, 12) },
    { FLDATA (NML, nml_mode, 0) },
    { FLDATA (USR, usr_mode, 0) },
    { FLDATA (MONUSR, mon_usr_trap, 0) },
    { FLDATA (ION, ion, 0) },
    { FLDATA (INTDEF, ion_defer, 0) },
    { ORDATA (INTREQ, int_req, 32) },
    { ORDATA (APILVL, api_lvl, 32) },
    { DRDATA (INTRHI, int_reqhi, 5) },
    { DRDATA (APILHI, api_lvlhi, 5), REG_RO },
    { ORDATA (XFRREQ, xfr_req, 32) },
    { FLDATA (BPT1, bpt, 3) },
    { FLDATA (BPT2, bpt, 2) },
    { FLDATA (BPT3, bpt, 1) },
    { FLDATA (BPT4, bpt, 0) },
    { ORDATA (ALERT, alert, 6) },
    { FLDATA (STOP_INVINS, stop_invins, 0) },
    { FLDATA (STOP_INVDEV, stop_invdev, 0) },
    { FLDATA (STOP_INVIOP, stop_inviop, 0) },
    { DRDATA (INDLIM, ind_lim, 8), REG_NZ+PV_LEFT },
    { DRDATA (EXULIM, exu_lim, 8), REG_NZ+PV_LEFT },
    { BRDATA (PCQ, pcq, 8, 14, PCQ_SIZE), REG_RO+REG_CIRC },
    { ORDATA (PCQP, pcq_p, 6), REG_HRO },
    { ORDATA (WRU, sim_int_char, 8) },
    { NULL }
    };

MTAB cpu_mod[] = {
    { UNIT_GENIE, 0, "standard peripherals", "SDS", &cpu_set_type },
    { UNIT_GENIE, UNIT_GENIE, "Genie peripherals", "GENIE", &cpu_set_type },
    { UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
    { UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
    { UNIT_MSIZE, 49152, NULL, "48K", &cpu_set_size },
    { UNIT_MSIZE, 65536, NULL, "64K", &cpu_set_size },
    { MTAB_XTD|MTAB_VDV|MTAB_NMO|MTAB_SHP, 0, "HISTORY", "HISTORY",
      &cpu_set_hist, &cpu_show_hist },
    { 0 }
    };

DEVICE cpu_dev = {
    "CPU", &cpu_unit, cpu_reg, cpu_mod,
    1, 8, 16, 1, 8, 24,
    &cpu_ex, &cpu_dep, &cpu_reset,
    NULL, NULL, NULL,
    NULL, 0
    };

/* Clock data structures

   rtc_dev      RTC device descriptor
   rtc_unit     RTC unit
   rtc_reg      RTC register list
*/

UNIT rtc_unit = { UDATA (&rtc_svc, 0, 0), 16000 };

REG rtc_reg[] = {
    { FLDATA (PIE, rtc_pie, 0) },
    { DRDATA (TIME, rtc_unit.wait, 24), REG_NZ + PV_LEFT },
    { DRDATA (TPS, rtc_tps, 8), PV_LEFT + REG_HRO },
    { NULL }
    };

MTAB rtc_mod[] = {
    { MTAB_XTD|MTAB_VDV, 50, NULL, "50HZ",
      &rtc_set_freq, NULL, NULL },
    { MTAB_XTD|MTAB_VDV, 60, NULL, "60HZ",
      &rtc_set_freq, NULL, NULL },
    { MTAB_XTD|MTAB_VDV, 0, "FREQUENCY", NULL,
      NULL, &rtc_show_freq, NULL },
    { 0 }
    };

DEVICE rtc_dev = {
    "RTC", &rtc_unit, rtc_reg, rtc_mod,
    1, 8, 8, 1, 8, 8,
    NULL, NULL, &rtc_reset,
    NULL, NULL, NULL
    };

/* Interrupt tables */

static const uint32 api_mask[32] = {
    0xFFFFFFFE, 0xFFFFFFFC, 0xFFFFFFF8, 0xFFFFFFF0,
    0xFFFFFFE0, 0xFFFFFFC0, 0xFFFFFF80, 0xFFFFFF00,
    0xFFFFFE00, 0xFFFFFC00, 0xFFFFF800, 0xFFFFF000,
    0xFFFFE000, 0xFFFFC000, 0xFFFF8000, 0xFFFF0000,
    0xFFFE0000, 0xFFFC0000, 0xFFF80000, 0xFFF00000,
    0xFFE00000, 0xFFC00000, 0xFF800000, 0xFF000000,
    0xFE000000, 0xFC000000, 0xF8000000, 0xF0000000,
    0xE0000000, 0xC0000000, 0x80000000, 0x00000000
    };

static const uint32 int_vec[32] = {
    0, 0, 0, 0,
    VEC_FORK, VEC_DRM,  VEC_MUXCF,VEC_MUXCO,
    VEC_MUXT, VEC_MUXR, VEC_HEOR, VEC_HZWC,
    VEC_GEOR, VEC_GZWC, VEC_FEOR, VEC_FZWC,
    VEC_EEOR, VEC_EZWC, VEC_DEOR, VEC_DZWC,
    VEC_CEOR, VEC_CZWC, VEC_WEOR, VEC_YEOR,
    VEC_WZWC, VEC_YZWC, VEC_RTCP, VEC_RTCS,
    VEC_IPAR, VEC_CPAR, VEC_PWRF, VEC_PWRO
    };

t_stat sim_instr (void)
{
extern int32 sim_interval;
uint32 inst, tinst, pa, save_P, save_mode;
t_stat reason, tr;

/* Restore register state */

if (io_init ())                                         /* init IO; conflict? */
    return SCPE_STOP;
reason = 0;
xfr_req = xfr_req & ~1;                                 /* <0> reserved */
int_req = int_req & ~1;                                 /* <0> reserved */
api_lvl = api_lvl & ~1;                                 /* <0> reserved */
set_dyn_map ();                                         /* set up mapping */
int_reqhi = api_findreq ();                             /* recalc int req */
chan_req = chan_testact ();                             /* recalc chan act */

/* Main instruction fetch/decode loop */

while (reason == 0) {                                   /* loop until halted */

    if (cpu_astop) {                                    /* debug stop? */
        cpu_astop = 0;
        return SCPE_STOP;
        }

    if (sim_interval <= 0) {                            /* event queue? */
        if (reason = sim_process_event ())              /* process */
            break;
        int_reqhi = api_findreq ();                     /* recalc int req */
        chan_req = chan_testact ();                     /* recalc chan act */
        }

    if (chan_req) {                                     /* channel request? */
        if (reason = chan_process ())                   /* process */
            break;
        int_reqhi = api_findreq ();                     /* recalc int req */
        chan_req = chan_testact ();                     /* recalc chan act */
        }

    sim_interval = sim_interval - 1;                    /* count down */
    if (ion && !ion_defer && int_reqhi) {               /* int request? */
        pa = int_vec[int_reqhi];                        /* get vector */
        if (pa == 0) {                                  /* bad value? */
            reason = STOP_ILLVEC;
            break;
            }
        tinst = ReadP (pa);                             /* get inst */
        save_mode = usr_mode;                           /* save mode */
        usr_mode = 0;                                   /* switch to mon */
        if (hst_lnt)                                    /* record inst */
            inst_hist (tinst, P, HIST_INT);
        if (pa != VEC_RTCP) {                           /* normal intr? */
            tr = one_inst (tinst, P, save_mode);        /* exec intr inst */
            if (tr) {                                   /* stop code? */
                usr_mode = save_mode;                   /* restore mode */
                reason = (tr > 0)? tr: STOP_MMINT;
                break;
                }
            api_lvl = api_lvl | (1u << int_reqhi);      /* set level active */
            api_lvlhi = int_reqhi;                      /* elevate api */
            }
        else {                                          /* clock intr */
            tr = rtc_inst (tinst);                      /* exec RTC inst */
            usr_mode = save_mode;                       /* restore mode */
            if (tr) {                                   /* stop code? */
                reason = (tr > 0)? tr: STOP_MMINT;
                break;
                }
            int_req = int_req & ~INT_RTCP;              /* clr clkp intr */
            }
        int_reqhi = api_findreq ();                     /* recalc int req */
        }
    else {                                              /* normal instr */
        if (sim_brk_summ && sim_brk_test (P, SWMASK ('E'))) { /* breakpoint? */
            reason = STOP_IBKPT;                        /* stop simulation */
            break;
            }
        reason = Read (save_P = P, &inst);              /* get instr */
        P = (P + 1) & VA_MASK;                          /* incr PC */
        if (reason == SCPE_OK) {                        /* fetch ok? */
            ion_defer = 0;                              /* clear ion */
            if (hst_lnt)
                inst_hist (inst, save_P, HIST_XCT);
            reason = one_inst (inst, save_P, usr_mode); /* exec inst */
            if (reason > 0) {                           /* stop code? */
                if (reason != STOP_HALT)
                    P = save_P;
                if (reason == STOP_IONRDY)
                    reason = 0;
                }
            }                                           /* end if r == 0 */
        if (reason < 0) {                               /* mm (fet or ex)? */
            pa = -reason;                               /* get vector */
            reason = 0;                                 /* defang */
            tinst = ReadP (pa);                         /* get inst */
            if (I_GETOP (tinst) != BRM) {               /* not BRM? */
                reason = STOP_TRPINS;                   /* fatal err */
                break;
                }
            save_mode = usr_mode;                       /* save mode */
            usr_mode = 0;                               /* switch to mon */
            mon_usr_trap = 0;
            if (hst_lnt)
                inst_hist (tinst, save_P, HIST_TRP);
            tr = one_inst (tinst, save_P, save_mode);   /* trap inst */
            if (tr) {                                   /* stop code? */
                usr_mode = save_mode;                   /* restore mode */
                P = save_P;                             /* restore PC */
                reason = (tr > 0)? tr: STOP_MMTRP;
                break;
                }
            }                                           /* end if reason */
        }                                               /* end else int */
    }                                                   /* end while */

/* Simulation halted */

pcq_r->qptr = pcq_p;                                    /* update pc q ptr */
return reason;
}

/* Simulate one instruction */

t_stat one_inst (uint32 inst, uint32 pc, uint32 mode)
{
uint32 op, shf_op, va, dat;
uint32 old_A, old_B, old_X;
int32 i, exu_cnt, sc;
t_stat r;

exu_cnt = 0;                                            /* init EXU count */
EXU_LOOP:
op = I_GETOP (inst);                                    /* get opcode */
if (inst & I_POP) {                                     /* POP? */
    dat = (EM3 << 18) | (EM2 << 15) | I_IND | pc;       /* data to save */
    if (nml_mode) {                                     /* normal mode? */
        dat = (OV << 23) | dat;                         /* ov in <0> */
        WriteP (0, dat);
        }
    else if (usr_mode) {                                /* user mode? */
        if (inst & I_USR) {                             /* SYSPOP? */
            dat = I_USR | (OV << 21) | dat;             /* ov in <2> */
            WriteP (0, dat);
            usr_mode = 0;                               /* set mon mode */
            }
        else {                                          /* normal POP */
            dat = (OV << 23) | dat;                     /* ov in <0> */
            if (r = Write (0, dat))
                return r;
            }
        }               
    else {                                              /* mon mode */
        dat = (OV << 21) | dat;                         /* ov in <2> */
        WriteP (0, dat);                                /* store return */
        }
    PCQ_ENTRY;                                          /* save PC */
    P = 0100 | op;                                      /* new PC */
    OV = 0;                                             /* clear ovflo */
    return SCPE_OK;                                     /* end POP */
    }

switch (op) {                                           /* case on opcode */

/* Loads and stores */

    case LDA:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &A))                          /* get operand */
            return r;
        break;

    case LDB:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &B))                          /* get operand */
            return r;
        break;

    case LDX:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &X))                          /* get operand */
            return r;
        break;

    case STA:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Write (va, A))                          /* write operand */
            return r;
        break;

    case STB:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Write (va, B))                          /* write operand */
            return r;
        break;

    case STX:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Write (va, X))                          /* write operand */
            return r;
        break;

    case EAX:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (nml_mode || usr_mode)                       /* normal or user? */
            X = (X & ~VA_MASK) | (va & VA_MASK);        /* only 14b */
        else X = (X & ~XVA_MASK) | (va & XVA_MASK);     /* mon, 15b */
        break;

    case XMA:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        if (r = Write (va, A))                          /* write A */
            return r;
        A = dat;                                        /* load A */
        break;

/* Arithmetic and logical */

    case ADD:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        A = Add24 (A, dat, 0);                          /* add */
        break;

    case ADC:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        OV = 0;                                         /* clear overflow */
        A = Add24 (A, dat, X >> 23);                    /* add with carry */
        break;

    case SUB:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        A = Add24 (A, dat ^ DMASK, 1);                  /* subtract */
        break;

    case SUC:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        OV = 0;                                         /* clear overflow */
        A = Add24 (A, dat ^ DMASK, X >> 23);            /* sub with carry */
        break;

    case ADM:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        dat = AddM24 (dat, A);                          /* mem + A */
        if (r = Write (va, dat))                        /* rewrite */
            return r;
        break;

    case MIN:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        dat = AddM24 (dat, 1);                          /* mem + 1 */
        if (r = Write (va, dat))                        /* rewrite */
            return r;
        break;

    case MUL:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        Mul48 (A, dat);                                 /* multiply */
        break;

    case DIV:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        Div48 (A, B, dat);                              /* divide */
        break;

    case ETR:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        A = A & dat;                                    /* and */
        break;

    case MRG:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        A = A | dat;                                    /* or */
        break;

    case EOR:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        A = A ^ dat;                                    /* xor */
        break;

/* Skips */

    case SKE:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        if (A == dat)                                   /* if A = op, skip */
            P = (P + 1) & VA_MASK;
        break;

    case SKG:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        if (SXT (A) > SXT (dat))                        /* if A > op, skip */
            P = (P + 1) & VA_MASK;
        break;

    case SKM:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        if (((A ^ dat) & B) == 0)                       /* if A = op masked */
            P = (P + 1) & VA_MASK;
        break;

    case SKA:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        if ((A & dat) == 0)                             /* if !(A & op), skip */
            P = (P + 1) & VA_MASK;
        break;

    case SKB:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        if ((B & dat) == 0)                             /* if !(B & op), skip */
            P = (P + 1) & VA_MASK;
        break;

    case SKN:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        if (dat & SIGN)                                 /* if op < 0, skip */
            P = (P + 1) & VA_MASK;
        break;

    case SKR:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        dat = AddM24 (dat, DMASK);                      /* decr operand */
        if (r = Write (va, dat))                        /* rewrite */
            return r;
        if (dat & SIGN)                                 /* if op < 0, skip */
            P = (P + 1) & VA_MASK;
        break;

    case SKD:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        if (SXT_EXP (B) < SXT_EXP (dat)) {              /* B < dat? */
            X = (dat - B) & DMASK;                      /* X = dat - B */
            P = (P + 1) & VA_MASK;                      /* skip */
            }
        else X = (B - dat) & DMASK;                     /* X = B - dat */
        break;

/* Control */

    case NOP:
        break;

    case HLT:
        if (!nml_mode && usr_mode)                      /* priv inst */
            return MM_PRVINS;
        return STOP_HALT;                               /* halt CPU */

    case EXU:
        exu_cnt = exu_cnt + 1;                          /* count chained EXU */
        if (exu_cnt > exu_lim)                          /* too many? */
            return STOP_EXULIM;
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        inst = dat;
        goto EXU_LOOP;
 
   case BRU:
        if (nml_mode && (inst & I_IND)) api_dismiss (); /* normal BRU*, dism */
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        PCQ_ENTRY;
        P = va & VA_MASK;                               /* branch */
        break;

    case BRX:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        X = (X + 1) & DMASK;                            /* incr X */
        if (X & I_IND) {                                /* bit 9 set? */
            if (r = Read (va, &dat))                    /* test dest access */
                return r;
            PCQ_ENTRY;
            P = va & VA_MASK;                           /* branch */
            }
        break;

    case BRM:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        dat = (EM3 << 18) | (EM2 << 15) | pc;           /* form return word */
        if (!nml_mode && !usr_mode)                     /* monitor mode? */
            dat = dat | (mode << 23) | (OV << 21);
        else dat = dat | (OV << 23);                    /* normal or user */
        if (r = Write (va, dat))                        /* write ret word */
            return r;
        PCQ_ENTRY;
        P = (va + 1) & VA_MASK;                         /* branch */
        break;

    case BRR:
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        PCQ_ENTRY;
        P = (dat + 1) & VA_MASK;                        /* branch */
        if (!nml_mode && !usr_mode) {                   /* monitor mode? */
            OV = OV | ((dat >> 21) & 1);                /* restore OV */
            if ((va & VA_USR) | (dat & I_USR)) {        /* mode change? */
                usr_mode = 1;
                if (mon_usr_trap)
                    return MM_MONUSR;
                }
            }
        else OV = OV | ((dat >> 23) & 1);               /* restore OV */
        break;

    case BRI:
        if (!nml_mode && usr_mode)                      /* priv inst */
            return MM_PRVINS;
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        api_dismiss ();                                 /* dismiss hi api */
        PCQ_ENTRY;
        P = dat & VA_MASK;                              /* branch */
        if (!nml_mode) {                                /* monitor mode? */
            OV = (dat >> 21) & 1;                       /* restore OV */
            if ((va & VA_USR) | (dat & I_USR)) {        /* mode change? */
                usr_mode = 1;
                if (mon_usr_trap)
                    return MM_MONUSR;
                }
            }
        else OV = (dat >> 23) & 1;                      /* restore OV */
        break;

/* Register change (microprogrammed) */

    case RCH:
        old_A = A;                                      /* save orig reg */
        old_B = B;
        old_X = X;
        if (inst & 000001211) {                         /* A change? */
            if (inst & 01000)
                dat = (~old_A + 1) & DMASK; /* CNA */
            else dat = 0;
            if (inst & 00200)
                dat = dat | old_X;
            if (inst & 00010)
                dat = dat | old_B;
            if (inst & 00100)
                A = (A & ~EXPMASK) | (dat & EXPMASK);
            else A = dat;
            }
        if (inst & 000000046) {                         /* B change? */
            if (inst & 00040)
                dat = old_X;
            else dat = 0;
            if (inst & 00004)
                dat = dat | old_A;
            if (inst & 00100)
                B = (B & ~EXPMASK) | (dat & EXPMASK);
            else B = dat;
            }
        if (inst & 020000420) {                         /* X change? */
            if (inst & 00400)
                dat = old_A;
            else dat = 0;
            if (inst & 00020)
                dat = dat | old_B;
            if (inst & 00100)
                X = SXT_EXP (dat) & DMASK;
            else X = dat;
            }
        break;

/* Overflow instruction */

    case OVF:
        if ((inst & 0100) & OV)
            P = (P + 1) & VA_MASK;
        if (inst & 0001)
            OV = 0;
        if ((inst & 0010) && (((X >> 1) ^ X) & EXPS))
            OV = 1;
        break;

/* Shifts */

    case RSH:
        if (r = EaSh (inst, &va))                       /* decode eff addr */
            return r;
        shf_op = I_GETSHFOP (va);                       /* get eff op */
        sc = va & I_SHFMSK;                             /* get eff count */
        switch (shf_op) {                               /* case on sub-op */
        case 00:                                        /* right arithmetic */
            if (sc)
                ShfR48 (sc, (A & SIGN)? DMASK: 0);
            break;
        case 04:                                        /* right cycle */
            sc = sc % 48;                               /* mod 48 */
            if (sc)
                RotR48 (sc);
            break;
        case 05:                                        /* right logical */
            if (sc)
                ShfR48 (sc, 0);
            break;
        default:
            CRETINS;                                    /* invalid inst */
            break;
            }                                           /* end case shf op */
        break;

    case LSH:
        if (r = EaSh (inst, &va))                       /* decode eff addr */
            return r;
        shf_op = I_GETSHFOP (va);                       /* get eff op */
        sc = va & I_SHFMSK;                             /* get eff count */
        switch (shf_op) {                               /* case on sub-op */
        case 00:                                        /* left arithmetic */
            dat = A;                                    /* save sign */
            if (sc > 48)
                sc = 48;
            for (i = 0; i < sc; i++) {                  /* loop */
                A = ((A << 1) | (B >> 23)) & DMASK;
                B = (B << 1) & DMASK;
                if ((A ^ dat) & SIGN)
                    OV = 1;
                }
            break;
        case 02:                                        /* normalize */
            if (sc > 48)
                sc = 48;
            for (i = 0; i < sc; i++) {                  /* until max count */
                if ((A ^ (A << 1)) & SIGN)
                    break;
                A = ((A << 1) | (B >> 23)) & DMASK;
                B = (B << 1) & DMASK;
                }
            X = (X - i) & DMASK;
            break;
        case 04:                                        /* left cycle */
            sc = sc % 48;                               /* mod 48 */
            if (sc)                                     /* rotate */
                RotR48 (48 - sc);
            break;
        case 06:                                        /* cycle normalize */
            if (sc > 48)
                sc = 48;
            for (i = 0; i < sc; i++) {                  /* until max count */
                if ((A ^ (A << 1)) & SIGN)
                    break;
                old_A = A;                              /* cyclic shift */
                A = ((A << 1) | (B >> 23)) & DMASK;
                B = ((B << 1) | (old_A >> 23)) & DMASK;
                }
            X = (X - i) & DMASK;
            break;
        default:
            CRETINS;                                    /* invalid inst */
            break;
            }                                           /* end case shf op */
        break;

/* I/O instructions */

    case MIW: case MIY:
        if (!nml_mode && usr_mode)                      /* priv inst */
            return MM_PRVINS;
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        if (r = op_miwy (inst, dat))                    /* process inst */
            return r;
        int_reqhi = api_findreq ();                     /* recalc int req */
        chan_req = chan_testact ();                     /* recalc chan act */
        break;

    case WIM: case YIM:
        if (!nml_mode && usr_mode)                      /* priv inst */
            return MM_PRVINS;
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = op_wyim (inst, &dat))                   /* process inst */
            return r;
        if (r = Write (va, dat))
            return r;                                   /* write result */
        int_reqhi = api_findreq ();                     /* recalc int req */
        chan_req = chan_testact ();                     /* recalc chan act */
        break;

    case EOM: case EOD:
        if (!nml_mode && usr_mode)                      /* priv inst */
            return MM_PRVINS;
        if (r = op_eomd (inst))                         /* process inst */
            return r;
        int_reqhi = api_findreq ();                     /* recalc int req */
        chan_req = chan_testact ();                     /* recalc chan act */
        ion_defer = 1;
        break;

    case POT:
        if (!nml_mode && usr_mode)                      /* priv inst */
            return MM_PRVINS;
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = Read (va, &dat))                        /* get operand */
            return r;
        if (r = op_pot (dat))                           /* process inst */
            return r;
        int_reqhi = api_findreq ();                     /* recalc int req */
        chan_req = chan_testact ();                     /* recalc chan act */
        break;

    case PIN:
        if (!nml_mode && usr_mode)                      /* priv inst */
            return MM_PRVINS;
        if (r = Ea (inst, &va))                         /* decode eff addr */
            return r;
        if (r = op_pin (&dat))                          /* process inst */
            return r;
        if (r = Write (va, dat))                        /* write result */
            return r;
        int_reqhi = api_findreq ();                     /* recalc int req */
        chan_req = chan_testact ();                     /* recalc chan act */
        break;

    case SKS:
        if (!nml_mode && usr_mode)                      /* priv inst */
            return MM_PRVINS;
        if (r = op_sks (inst, &dat))                    /* process inst */
            return r;
        if (dat)
            P = (P + 1) & VA_MASK;
        break;

    default:
        if (!nml_mode && usr_mode)                      /* priv inst */
            return MM_PRVINS;
        CRETINS;                                        /* invalid inst */
        break;
        }

return SCPE_OK;
}

/* Effective address calculation */

t_stat Ea (uint32 inst, uint32 *addr)
{
int32 i;
uint32 wd = inst;                                       /* homeable */
uint32 va = wd & XVA_MASK;                              /* initial va */
t_stat r;

for (i = 0; i < ind_lim; i++) {                         /* count indirects */
    if (wd & I_IDX)
        va = (va & VA_USR) | ((va + X) & VA_MASK);
    *addr = va;
    if ((wd & I_IND) == 0) {                            /* end of ind chain? */
        if (hst_lnt)                                    /* record */
            hst[hst_p].ea = *addr;
        return SCPE_OK;
        }
    if (r = Read (va, &wd))                             /* read ind; fails? */
        return r;
    va = (va & VA_USR) | (wd & XVA_MASK);
    }
return STOP_INDLIM;                                     /* too many indirects */
}

/* Effective address calculation for shifts - direct indexing is 9b */

t_stat EaSh (uint32 inst, uint32 *addr)
{
int32 i;
uint32 wd = inst;                                       /* homeable */
uint32 va = wd & XVA_MASK;                              /* initial va */
t_stat r;

for (i = 0; i < ind_lim; i++) {                         /* count indirects */
    if ((wd & I_IND) == 0) {                            /* end of ind chain? */
        if (wd & I_IDX)                                 /* 9b indexing */
            *addr = (va & (VA_MASK & ~I_SHFMSK)) | ((va + X) & I_SHFMSK);
        else *addr = va & VA_MASK;
        if (hst_lnt)                                    /* record */
            hst[hst_p].ea = *addr;
        return SCPE_OK;
        }
    if (wd & I_IDX)
        va = (va & VA_USR) | ((va + X) & VA_MASK);
    if (r = Read (va, &wd))                             /* read ind; fails? */
        return r;
    va = (va & VA_USR) | (wd & XVA_MASK);
    }
return STOP_INDLIM;                                     /* too many indirects */
}

/* Read word from virtual address */

t_stat Read (uint32 va, uint32 *dat)
{
uint32 pgn, map, pa;

if (nml_mode) {                                         /* normal? */
    va = va & VA_MASK;                                  /* ignore user */
    if (va < 020000)                                    /* first 8K: 1 for 1 */
        pa = va;
    else if (va < 030000)                               /* next 4K: ext EM2 */
        pa = va + em2_dyn;
    else pa = va + em3_dyn;                             /* next 4K: ext EM3 */
    }
else if (usr_mode || (va & VA_USR)) {                   /* user mapping? */
    pgn = VA_GETPN (va);                                /* get page no */
    map = usr_map[pgn];                                 /* get map entry */
    if (map == MAP_PROT)                                /* prot? no access */
        return MM_NOACC;
    pa = (map & ~MAP_PROT) | (va & VA_POFF);            /* map address */
    }
else {
    pgn = VA_GETPN (va);                                /* mon, get page no */
    map = mon_map[pgn];                                 /* get map entry */
    if (map & MAP_PROT)
        return MM_NOACC;                                /* prot? no access */
    pa = map | (va & VA_POFF);                          /* map address */
    }
*dat = M[pa];                                           /* return word */
return SCPE_OK;
}

/* Write word to virtual address */

t_stat Write (uint32 va, uint32 dat)
{
uint32 pgn, map, pa;

if (nml_mode) {                                         /* normal? */
    va = va & VA_MASK;                                  /* ignore user */
    if (va < 020000)                                    /* first 8K: 1 for 1 */
        pa = va;
    else if (va < 030000)                               /* next 4K: ext EM2 */
        pa = va + em2_dyn;
    else pa = va + em3_dyn;                             /* next 4K: ext EM3 */
    }
else if (usr_mode || (va & VA_USR)) {                   /* user mapping? */
    pgn = VA_GETPN (va);                                /* get page no */
    map = usr_map[pgn];                                 /* get map entry */
    if (map & MAP_PROT) {                               /* protected page? */
        if (map == MAP_PROT)                            /* zero? no access */
            return MM_NOACC;
        else return MM_WRITE;                           /* else, write prot */
        }
    pa = map | (va & VA_POFF);                          /* map address */
    }
else {
    pgn = VA_GETPN (va);                                /* mon, get page no */
    map = mon_map[pgn];                                 /* get map entry */
    if (map & MAP_PROT)                                 /* prot? no access */
        return MM_NOACC;
    pa = map | (va & VA_POFF);                          /* map address */
    }
if (MEM_ADDR_OK (pa))
    M[pa] = dat;
return SCPE_OK;
}

/* Relocate addr for console access */

uint32 RelocC (int32 va, int32 sw)
{
uint32 nml = nml_mode, usr = usr_mode;
uint32 pa, pgn, map;

if (sw & SWMASK ('N'))                                  /* -n: normal */
    nml = 1; 
else if (sw & SWMASK ('X'))                             /* -x: mon */
    nml = usr = 0;
else if (sw & SWMASK ('U')) {                           /* -u: user */
    nml = 0;
    usr = 1;
    }
else if (!(sw & SWMASK ('V')))                          /* -v: curr */
    return va;
set_dyn_map ();
if (nml) {                                              /* normal? */
    if (va < 020000)                                    /* first 8K: 1 for 1 */
        pa = va;
    else if (va < 030000)                               /* next 4K: ext EM2 */
        pa = va + em2_dyn;
    else pa = va + em3_dyn;                             /* next 4K: ext EM3 */
    }
else {
    pgn = VA_GETPN (va);                                /* get page no */
    map = usr? usr_map[pgn]: mon_map[pgn];              /* get map entry */
    if (map == MAP_PROT)                                /* no access page? */
        return MAXMEMSIZE + 1;
    pa = (map & ~MAP_PROT) | (va & VA_POFF);            /* map address */
    }
return pa;
}

/* Arithmetic routines */

uint32 Add24 (uint32 s1, uint32 s2, uint32 cin)
{
uint32 t = s1 + s2 + cin;                               /* add with carry in */
if (t > DMASK)                                          /* carry to X<0> */
    X = X | SIGN;
else X = X & ~SIGN;
if (((s1 ^ ~s2) & (s1 ^ t))                             /* overflow */
        & SIGN) OV = 1;
return t & DMASK;
}

uint32 AddM24 (uint32 s1, uint32 s2)
{
uint32 t = s1 + s2;                                     /* add */
if (((s1 ^ ~s2) & (s1 ^ t)) & SIGN)                     /* overflow */
    OV = 1;
return t & DMASK;
}

void Mul48 (uint32 s1, uint32 s2)
{
uint32 a = ABS (s1);
uint32 b = ABS (s2);
uint32 hi, md, lo, t, u;

if ((a == 0) || (b == 0)) {                             /* ops zero? */
    A = B = 0;
    return;
    }
t = a >> 12;                                            /* split op1 */
a = a & 07777;
u = b >> 12;                                            /* split op2 */
b = b & 07777;
md = (a * u) + (b * t);                                 /* cross product */
lo = (a * b) + ((md & 07777) << 12);                    /* low result */
hi = (t * u) + (md >> 12) + (lo >> 24);                 /* hi result */
A = ((hi << 1) & DMASK) | ((lo & DMASK) >> 23);
B = (lo << 1) & DMASK;
if ((s1 ^ s2) & SIGN) {
    B = ((B ^ DMASK) + 1) & DMASK;
    A = ((A ^ DMASK) + (B == 0)) & DMASK;
    }
else if (A & SIGN)
    OV = 1;
return;
}

/* Divide - the SDS 940 uses a non-restoring divide.  The algorithm
   runs even for overflow cases.  Hence it must be emulated precisely
   to give the right answers for diagnostics. If the dividend is 
   negative, AB are 2's complemented starting at B<22>, and B<23>
   is unchanged. */

void Div48 (uint32 ar, uint32 br, uint32 m)
{
int32 i;
uint32 quo = 0;                                         /* quotient */
uint32 dvdh = ar, dvdl = br;                            /* dividend */
uint32 dvr = ABS (m);                                   /* make dvr pos */

if (TSTS (dvdh)) {                                      /* dvd < 0? */
    dvdl = (((dvdl ^ DMASK) + 2) & (DMASK & ~1)) |      /* 23b negate */
        (dvdl & 1);                                     /* low bit unch */
    dvdh = ((dvdh ^ DMASK) + (dvdl <= 1)) & DMASK;
    }
if ((dvdh > dvr) ||                                     /* divide fail? */
   ((dvdh == dvr) && dvdl) ||
   ((dvdh == dvr) && !TSTS (ar ^ m)))
   OV = 1;
dvdh = (dvdh - dvr) & DMASK;                            /* initial sub */
for (i = 0; i < 23; i++) {                              /* 23 iterations */
    quo = (quo << 1) | ((dvdh >> 23) ^ 1);              /* quo bit = ~sign */
    dvdh = ((dvdh << 1) | (dvdl >> 23)) & DMASK;        /* shift divd */
    dvdl = (dvdl << 1) & DMASK;
    if (quo & 1)                                        /* test ~sign */
        dvdh = (dvdh - dvr) & DMASK;                    /* sign was +, sub */
    else dvdh = (dvdh + dvr) & DMASK;                   /* sign was -, add */
    }
quo = quo << 1;                                         /* shift quo */
if (dvdh & SIGN)                                        /* last op -? restore */
    dvdh = (dvdh + dvr) & DMASK;
else quo = quo | 1;                                     /* +, set quo bit */
if (TSTS (ar ^ m))                                      /* sign of quo */
    A = NEG (quo);
else A = quo;                                           /* A = quo */
if (TSTS (ar))                                          /* sign of rem */
    B = NEG (dvdh);
else B = dvdh;                                          /* B = rem */
return;
}

void RotR48 (uint32 sc)
{
uint32 t = A;

if (sc >= 24) {
    sc = sc - 24;
    A = ((B >> sc) | (A << (24 - sc))) & DMASK;
    B = ((t >> sc) | (B << (24 - sc))) & DMASK;
    }
else {
    A = ((A >> sc) | (B << (24 - sc))) & DMASK;
    B = ((B >> sc) | (t << (24 - sc))) & DMASK;
    }
return;
}

void ShfR48 (uint32 sc, uint32 sgn)
{
if (sc >= 48)
    A = B = sgn;
if (sc >= 24) {
    sc = sc - 24;
    B = ((A >> sc) | (sgn << (24 - sc))) & DMASK;
    A = sgn;
    }
else {
    B = ((B >> sc) | (A << (24 - sc)) & DMASK);
    A = ((A >> sc) | (sgn << (24 - sc))) & DMASK;
    }
return;
}

/* POT routines for RL1, RL2, RL4 */

t_stat pot_RL1 (uint32 num, uint32 *dat)
{
RL1 = *dat;
set_dyn_map ();
return SCPE_OK;
}

t_stat pot_RL2 (uint32 num, uint32 *dat)
{
RL2 = *dat;
set_dyn_map ();
return SCPE_OK;
}

t_stat pot_RL4 (uint32 num, uint32 *dat)
{
RL4 = (*dat) & 03737;
set_dyn_map ();
return SCPE_OK;
}

/* Map EM2, EM3, RL1, RL2, RL4 to dynamic forms

   EM2, EM3 - left shifted 12, base virtual address subtracted
   RL1, RL2 - page left shifted 11
   RL3      - filled in as 1 to 1 map
   RL4      - EM2 or page left shifted 11, PROT bit inserted
*/

void set_dyn_map (void)
{
em2_dyn = ((EM2 & 07) << 12) - 020000;
em3_dyn = ((EM3 & 07) << 12) - 030000;
usr_map[0] = (RL1 >> 7) & (MAP_PROT | MAP_PAGE);
usr_map[1] = (RL1 >> 1) & (MAP_PROT | MAP_PAGE);
usr_map[2] = (RL1 << 5) & (MAP_PROT | MAP_PAGE);
usr_map[3] = (RL1 << 11) & (MAP_PROT | MAP_PAGE);
usr_map[4] = (RL2 >> 7) & (MAP_PROT | MAP_PAGE);
usr_map[5] = (RL2 >> 1) & (MAP_PROT | MAP_PAGE);
usr_map[6] = (RL2 << 5) & (MAP_PROT | MAP_PAGE);
usr_map[7] = (RL2 << 11) & (MAP_PROT | MAP_PAGE);
mon_map[0] = (0 << VA_V_PN);
mon_map[1] = (1 << VA_V_PN);
mon_map[2] = (2 << VA_V_PN);
mon_map[3] = (3 << VA_V_PN);
mon_map[4] = ((EM2 & 07) << 12);
mon_map[5] = ((EM2 & 07) << 12) + (1 << VA_V_PN);
mon_map[6] = (RL4 << 5) & MAP_PAGE;
mon_map[7] = (RL4 << 11) & MAP_PAGE;
if (mon_map[6] == 0)
    mon_map[6] = MAP_PROT;
if (mon_map[7] == 0)
    mon_map[7] = MAP_PROT;
return;
}

/* Recalculate api requests */

uint32 api_findreq (void)
{
uint32 i, t;

t = (int_req & ~1) & api_mask[api_lvlhi];               /* unmasked int */
for (i = 31; t && (i > 0); i--) {                       /* find highest */
    if ((t >> i) & 1)
        return i;
    }
return 0;                                               /* none */
}

/* Dismiss highest priority interrupt */

void api_dismiss (void)
{
uint32 i, t;

t = 1u << api_lvlhi;                                    /* highest active */
int_req = int_req & ~t;                                 /* clear int req */
api_lvl = api_lvl & ~t;                                 /* clear api level */
api_lvlhi = 0;                                          /* assume all clear */
for (i = 31; api_lvl && (i > 0); i--) {                 /* find highest api */
    if ((api_lvl >> i) & 1) {                           /* bit set? */
        api_lvlhi = i;                                  /* record level */
        break;                                          /* done */
        }
    }
int_reqhi = api_findreq ();                             /* recalc intreq */
return;
}

/* Reset routine */

t_stat cpu_reset (DEVICE *dptr)
{
OV = 0;
EM2 = 2;
EM3 = 3;
RL1 = RL2 = RL4 = 0;
ion = ion_defer = 0;
nml_mode = 1;
usr_mode = 0;
mon_usr_trap = 0;
int_req = 0;
int_reqhi = 0;
api_lvl = 0;
api_lvlhi = 0;
alert = 0;
pcq_r = find_reg ("PCQ", NULL, dptr);
if (pcq_r)
    pcq_r->qptr = 0;
else return SCPE_IERR;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}

/* Memory examine */

t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
uint32 pa;

pa = RelocC (addr, sw);
if (pa > MAXMEMSIZE)
    return SCPE_REL;
if (pa >= MEMSIZE)
    return SCPE_NXM;
if (vptr != NULL)
    *vptr = M[pa] & DMASK;
return SCPE_OK;
}

/* Memory deposit */

t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
uint32 pa;

pa = RelocC (addr, sw);
if (pa > MAXMEMSIZE)
    return SCPE_REL;
if (pa >= MEMSIZE)
    return SCPE_NXM;
M[pa] = val & DMASK;
return SCPE_OK;
}

/* Set memory size */

t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
uint32 i;

if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 037777) != 0))
    return SCPE_ARG;
for (i = val; i < MEMSIZE; i++)
    mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
    return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++)
    M[i] = 0;
return SCPE_OK;
}

/* Set system type (1 = Genie, 0 = standard) */

t_stat cpu_set_type (UNIT *uptr, int32 val, char *cptr, void *desc)
{
extern t_stat drm_reset (DEVICE *dptr);
extern DEVICE drm_dev, mux_dev, muxl_dev;
extern UNIT drm_unit, mux_unit;
extern DIB mux_dib;

if ((cpu_unit.flags & UNIT_GENIE) == (uint32) val)
    return SCPE_OK;
if ((drm_unit.flags & UNIT_ATT) ||                      /* attached? */
    (mux_unit.flags & UNIT_ATT))                        /* can't do it */
    return SCPE_NOFNC;
if (val) {                                              /* Genie? */
    drm_dev.flags = drm_dev.flags & ~DEV_DIS;           /* enb drum */
    mux_dev.flags = mux_dev.flags & ~DEV_DIS;           /* enb mux */
    muxl_dev.flags = muxl_dev.flags & ~DEV_DIS;
    mux_dib.dev = DEV3_GMUX;                            /* Genie mux */
    }
else {
    drm_dev.flags = drm_dev.flags | DEV_DIS;            /* dsb drum */
    mux_dib.dev = DEV3_SMUX;                            /* std mux */
    return drm_reset (&drm_dev);
    }
return SCPE_OK;
}

/* The real time clock runs continuously; therefore, it only has
   a unit service routine and a reset routine.  The service routine
   sets an interrupt that invokes the clock counter.  The clock counter
   is a "one instruction interrupt", and only MIN/SKR are valid.
*/

t_stat rtc_svc (UNIT *uptr)
{
if (rtc_pie)                                            /* set pulse intr */
    int_req = int_req | INT_RTCP;
sim_activate (&rtc_unit, sim_rtcn_calb (rtc_tps, TMR_RTC)); /* reactivate */
return SCPE_OK;
}

/* Clock interrupt instruction */

t_stat rtc_inst (uint32 inst)
{
uint32 op, dat, val, va;
t_stat r;

op = I_GETOP (inst);                                    /* get opcode */
if (op == MIN)                                          /* incr */
    val = 1;
else if (op == SKR)                                     /* decr */
    val = DMASK;
else return STOP_RTCINS;                                /* can't do it */
if (r = Ea (inst, &va))                                 /* decode eff addr */
    return r;
if (r = Read (va, &dat))                                /* get operand */
    return r;
dat = AddM24 (dat, val);                                /* mem +/- 1 */
if (r = Write (va, dat))                                /* rewrite */
    return r;
if (dat == 0)                                           /* set clk sync int */
    int_req = int_req | INT_RTCS;
return SCPE_OK;
}

/* Clock reset */

t_stat rtc_reset (DEVICE *dptr)
{
rtc_pie = 0;                                            /* disable pulse */
sim_activate (&rtc_unit, rtc_unit.wait);                /* activate unit */
return SCPE_OK;
}

/* Set frequency */

t_stat rtc_set_freq (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (cptr)
    return SCPE_ARG;
if ((val != 50) && (val != 60))
    return SCPE_IERR;
rtc_tps = val;
return SCPE_OK;
}

/* Show frequency */

t_stat rtc_show_freq (FILE *st, UNIT *uptr, int32 val, void *desc)
{
fprintf (st, (rtc_tps == 50)? "50Hz": "60Hz");
return SCPE_OK;
}

/* Record history */

void inst_hist (uint32 ir, uint32 pc, uint32 tp)
{
hst_p = (hst_p + 1);                                    /* next entry */
if (hst_p >= hst_lnt)
    hst_p = 0;
hst[hst_p].typ = tp | (OV << 4);
hst[hst_p].pc = pc;
hst[hst_p].ir = ir;
hst[hst_p].a = A;
hst[hst_p].b = B;
hst[hst_p].x = X;
hst[hst_p].ea = HIST_NOEA;
return;
}

/* Set history */

t_stat cpu_set_hist (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 i, lnt;
t_stat r;

if (cptr == NULL) {
    for (i = 0; i < hst_lnt; i++)
        hst[i].typ = 0;
    hst_p = 0;
    return SCPE_OK;
    }
lnt = (int32) get_uint (cptr, 10, HIST_MAX, &r);
if ((r != SCPE_OK) || (lnt && (lnt < HIST_MIN)))
    return SCPE_ARG;
hst_p = 0;
if (hst_lnt) {
    free (hst);
    hst_lnt = 0;
    hst = NULL;
    }
if (lnt) {
    hst = (InstHistory *) calloc (lnt, sizeof (InstHistory));
    if (hst == NULL)
        return SCPE_MEM;
    hst_lnt = lnt;
    }
return SCPE_OK;
}

/* Show history */

t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, void *desc)
{
int32 ov, k, di, lnt;
char *cptr = (char *) desc;
t_stat r;
t_value sim_eval;
InstHistory *h;
extern t_stat fprint_sym (FILE *ofile, t_addr addr, t_value *val,
    UNIT *uptr, int32 sw);
static char *cyc[] = { "   ", "   ", "INT", "TRP" };

if (hst_lnt == 0)                                       /* enabled? */
    return SCPE_NOFNC;
if (cptr) {
    lnt = (int32) get_uint (cptr, 10, hst_lnt, &r);
    if ((r != SCPE_OK) || (lnt == 0))
        return SCPE_ARG;
    }
else lnt = hst_lnt;
di = hst_p - lnt;                                       /* work forward */
if (di < 0)
    di = di + hst_lnt;
fprintf (st, "CYC PC    OV A        B        X        EA      IR\n\n");
for (k = 0; k < lnt; k++) {                             /* print specified */
    h = &hst[(++di) % hst_lnt];                         /* entry pointer */
    if (h->typ) {                                       /* instruction? */
        ov = (h->typ >> 4) & 1;                         /* overflow */
        fprintf (st, "%s %05o %o  %08o %08o %08o ", cyc[h->typ & 3],
            h->pc, ov, h->a, h->b, h->x);
        if (h->ea & HIST_NOEA)
            fprintf (st, "      ");
        else fprintf (st, "%05o ", h->ea);
        sim_eval = h->ir;
        if ((fprint_sym (st, h->pc, &sim_eval, &cpu_unit, SWMASK ('M'))) > 0)
            fprintf (st, "(undefined) %08o", h->ir);
        fputc ('\n', st);                               /* end line */
        }                                               /* end else instruction */
    }                                                   /* end for */
return SCPE_OK;
}