1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
# Contributors :
# Pierre PETERLONGO, pierre.peterlongo@inria.fr [12/06/13]
# Nicolas MAILLET, nicolas.maillet@inria.fr [12/06/13]
# Guillaume Collet, guillaume@gcollet.fr [27/05/14]
# Gaetan BENOIT, gaetan.benoit@inria.fr [08/10/15]
# Claire LEMAITRE, claire.lemaitre@inria.fr [06/07/16]
#
# This software is a computer program whose purpose is to find all the
# similar reads between sets of NGS reads. It also provide a similarity
# score between the two samples.
#
# Copyright (C) 2014 INRIA
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
## Usage : Rscript heatmap.r matrix_asym.csv matrix_sym.csv output_file.pdf title
if (!require("gplots")) {
install.packages("gplots", dependencies = TRUE)
library(gplots)
}
#options(echo=TRUE) # if you want see commands in output file
args <- commandArgs(trailingOnly = TRUE)
#png(file=args[3],width=800,height=800,res=65)
width = as.numeric(args[4])
height = as.numeric(args[5])
format = args[6]
if(format == "png"){
png(file=paste0(args[3], ".png"), width=width, height=height, units="in",res=72)
} else{
pdf(file=paste0(args[3], ".pdf"), width=width, height=height)
}
cr3 = as.matrix(read.table(file=args[1], sep=";", header=TRUE, row.names=1)) # can be symetric matrix
cr3_norm = as.matrix(read.table(file=args[2], sep=";", header=TRUE, row.names=1)) # must be a symetric matrix
cr3[lower.tri(cr3)] <- t(cr3)[lower.tri(cr3)] #symmetrize matrix
cr3_norm[lower.tri(cr3_norm)] <- t(cr3_norm)[lower.tri(cr3_norm)] #symmetrize matrix
distance_name = basename(args[1])
distance_name = unlist(strsplit(distance_name, "[.]"))[1]
distance_name = gsub("mat_", "", distance_name)
use_metadata = F
if(length(args) == 8){
use_metadata = T
metadata_table = as.matrix(read.table(file=args[7], sep=";", header=TRUE, row.names=1))
metadata_variable = args[8]
#print(metadata_table)
variables = metadata_table[,metadata_variable]
#print(variables)
meatadata_index = list()
dataset_ids = rownames(metadata_table)
for(i in 1:length(dataset_ids)){
dataset_id = dataset_ids[i]
#print(dataset_id)
#print(variables[[i]])
meatadata_index[[dataset_id]] = variables[[i]]
#print(meatadata_index[[dataset_id]])
}
colors = c()
dataset_ids = rownames(cr3_norm)
for(i in 1:dim(cr3_norm)[1]){
dataset_id = dataset_ids[i]
colors = c(colors, meatadata_index[[dataset_id]])
}
colors_numeric_temp = c()
colors_numeric = as.numeric(as.factor(colors))
for(i in 1:length(colors_numeric)){
colors_numeric_temp = c(colors_numeric_temp, colors_numeric[i]+1)
}
colors_numeric = colors_numeric_temp
#print(colors)
}
n=100 # number of steps between 2 colors
## Transforming 0-1 distances in 0-100 similarity measure
if(grepl("chord",args[1]) || grepl("hellinger",args[1])){
cr3 = (sqrt(2) - cr3) * 100
} else {
cr3 = (1 - cr3) * 100
}
## Computing mini-maxi for colour palette
mini=min(cr3[])
maxi=max(cr3[row(cr3)!=col(cr3)]) # ignoring the diagonal
trueMax=max(cr3[]) # typically the value in the diagonal = 100
q25=quantile(cr3[row(cr3)!=col(cr3)],0.25,1)
q50=quantile(cr3[row(cr3)!=col(cr3)],0.5,1)
q75=quantile(cr3[row(cr3)!=col(cr3)],0.75,1)
## We use the quantiles to ignore some outlier values in the matrix (values<mini will have colour of mini and values>maxi will have a colour between brown and grey23)
mini=max(q25-1.5*(q75-q25),0)
maxi=min(q75+1.5*(q75-q25),trueMax)
palette=colorRampPalette(c("green", "yellow", "red", "brown", "grey23"))(n = 5*n-1)
## Checking if maxi = trueMax
trueMax.needed=ifelse(maxi<trueMax,"T","F")
if(trueMax.needed){
breaks=c(seq(mini,maxi,length=4*n),seq(maxi+1e-5,trueMax,length=n))
# breaks are equally distributed in the range mini-maxi (intervals can be different in the range maxi-trueMax, containing very few points)
} else {
breaks=c(seq(mini,maxi,length=5*n))
}
# Dendrogram is obtained with the symetric matrix
distance = dist(cr3_norm)
cluster = hclust(distance, method="average")
dendrogram = as.dendrogram(cluster)
# Heatmap
par(fig=c(0.2,1,0,0.8),mar=rep(1,4))
if(use_metadata){
colors_numeric=as.character(colors_numeric)
heatmap.2(cr3,
trace = "none",
dendrogram = "row",
key = FALSE,
Rowv=dendrogram,
Colv = rev(dendrogram),
col=palette,
breaks = breaks,
margins=c(10,10),
main=paste0("Simka heatmap\n", distance_name), sub="", cexRow = 0.8, cexCol = 0.8, RowSideColors=colors_numeric, ColSideColors=colors_numeric)
} else {
heatmap.2(cr3,
trace = "none",
dendrogram = "row",
key = FALSE,
Rowv=dendrogram,
Colv = rev(dendrogram),
col=palette,
breaks = breaks,
margins=c(10,10),
main=paste0("Simka heatmap\n", distance_name), sub="", cexRow = 0.8, cexCol = 0.8)
}
if(use_metadata){
par(lend = 1) # square line ends for the color legend
legend("topright", title=metadata_variable, legend=unique(colors), col=unique(colors_numeric), pch=16, lty= 1, # line style
lwd = 10
)
}
# Adding the colour scale
par(fig=c(0.05,0.4,0.8,1), mar=rep(2,4), new=TRUE)
if(trueMax.needed){
diff=maxi-mini
breaksToMaxi=breaks[1:(4*n)] # using only breaks from mini to maxi
black.width=max(diff/9)
black.space=max(diff/9)
plot(c(mini,maxi+black.width+black.space),c(0,2),type="n",yaxt="n",ylab="",xlab="",xaxt="n",xaxs = "i", yaxs = "i")
rect(breaksToMaxi[-length(breaksToMaxi)],0,breaksToMaxi[-1],2,col=palette,border=NA)
ti=pretty(breaksToMaxi)
ti=ti[ti<maxi]
axis(1,at=c(ti,maxi+black.space+black.width/2),label=c(ti,trueMax))
# Here plotting the TrueMax colour with a white space
rect(maxi+black.space,0,maxi+black.space+black.width,2,col=palette[5*n-1],border=NA)
rect(maxi,-0.1,maxi+black.space,2.1,col="white",border=NA)
} else{
plot(range(breaks),c(0,2),type="n",yaxt="n",ylab="",xlab="",xaxs = "i", yaxs = "i")
rect(breaks[-length(breaks)],0,breaks[-1],2,col=palette,border=NA)
}
d=dev.off()
|