1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
|
#!/usr/bin/env python
#=========================================================================
#
# Copyright Insight Software Consortium
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0.txt
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#=========================================================================
from __future__ import print_function
from __future__ import division
import SimpleITK as sitk
import sys
import os
import math
if len ( sys.argv ) < 4:
print( "Usage: FFTConvolution <input> <kernel> <output>" )
sys.exit ( 1 )
inputFileName = sys.argv[1]
kernelFileName = sys.argv[2]
outputFileName = sys.argv[3]
### Input Image ###
# read the input image
img = sitk.ReadImage( inputFileName )
# save the type of pixel the input is, so that we can cast the result
# back out to the same type
pixelID = img.GetPixelID()
# pad the image
img = sitk.MirrorPad( img, [128] *2, [128]*2 )
size = img.GetSize();
# perform the FFT
fftimg = sitk.ForwardFFT( sitk.Cast( img, sitk.sitkFloat32 ) )
### Kernel Image ###
# Read the kernel image file
kernel = sitk.ReadImage( kernelFileName )
# flip kernel about all axis
kernel = sitk.Flip( kernel, [True]*2 )
# normalize the kernel to sum to ~1
stats = sitk.StatisticsImageFilter();
stats.Execute( kernel )
kernel = sitk.Cast( kernel / stats.GetSum(), sitk.sitkFloat32 )
upadding = [0]*2
upadding[0] = int( math.floor( (size[0] - kernel.GetSize()[0])/2.0 ) )
upadding[1] = int( math.floor( (size[1] - kernel.GetSize()[1])/2.0 ) )
lpadding = [0]*2
lpadding[0] = int( math.ceil( (size[0] - kernel.GetSize()[0])/2.0 ) )
lpadding[1] = int( math.ceil( (size[1] - kernel.GetSize()[1])/2.0 ) )
# pad the kernel to prevent edge artifacts
kernel = sitk.ConstantPad( kernel, upadding, lpadding, 0.0 )
# perform FFT on kernel
fftkernel = sitk.ForwardFFT( sitk.FFTShift( kernel ) )
# meta-data must match for multiplication
fftkernel.SetSpacing( fftimg.GetSpacing() )
fftkernel.SetOrigin( fftimg.GetOrigin() )
fftkernel.SetDirection( fftimg.GetDirection() )
### Convolution ###
# Finally perform the convolution in Fourier space by multiplication
img = sitk.InverseFFT( fftimg*fftkernel )
# remove the padding
img = sitk.Crop( img, [128]*2, [128]*2 )
### Writing ###
# write the output image the same type as the input
sitk.WriteImage( sitk.Cast( img, pixelID ), outputFileName )
if ( not "SITK_NOSHOW" in os.environ ):
sitk.Show( sitk.ReadImage( inputFileName ), "original" )
sitk.Show( sitk.ReadImage( kernelFileName ), "kernel" )
sitk.Show( sitk.Cast( img, pixelID ), "FFT_Convolution" )
|