1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <SimpleITKTestHarness.h>
#include <SimpleITK.h>
#include "itkImage.h"
#include "itkVectorImage.h"
#include <memory>
TEST(LabelStatistics,Simple) {
itk::simple::ImageFileReader reader;
//By using the same image, the label min/max values should equal the label itself.
itk::simple::Image intensityImage = reader.SetFileName ( dataFinder.GetFile ( "Input/2th_cthead1.png" ) ).Execute();
itk::simple::Image labelImage = reader.SetFileName ( dataFinder.GetFile ( "Input/2th_cthead1.png" ) ).Execute();
itk::simple::LabelStatisticsImageFilter lsFilter;
EXPECT_TRUE(lsFilter.GetUseHistograms());
lsFilter.UseHistogramsOff();
EXPECT_FALSE(lsFilter.GetUseHistograms());
lsFilter.UseHistogramsOn();
EXPECT_TRUE(lsFilter.GetUseHistograms());
lsFilter.SetUseHistograms(false);
EXPECT_FALSE(lsFilter.GetUseHistograms());
lsFilter.SetUseHistograms(true);
EXPECT_TRUE(lsFilter.GetUseHistograms());
try {
lsFilter.Execute ( intensityImage, labelImage );
} catch ( itk::ExceptionObject e ) {
std::cout << "LabelStatistics failed: " << e.what() << std::endl;
}
std::vector<int64_t> labels = lsFilter.GetLabels();
for(std::vector<int64_t>::const_iterator i = labels.begin(); i != labels.end(); ++i)
{
//By using the same image, the label min/max/mean values should equal the label itself.
ASSERT_EQ(lsFilter.GetMinimum (*i) , *i);
ASSERT_EQ(lsFilter.GetMaximum (*i) , *i);
ASSERT_EQ(lsFilter.GetMean (*i) , *i);
ASSERT_EQ(lsFilter.GetMedian (*i) , *i);
//By using the same image, the label variance values should equal to Zero.
ASSERT_EQ(lsFilter.GetSigma (*i) , 0.0 );
ASSERT_EQ(lsFilter.GetVariance(*i) , 0.0 );
}
ASSERT_EQ(lsFilter.GetSum (0) , 0 );
ASSERT_EQ(lsFilter.GetCount(0) , 33390u );
}
TEST(LabelStatistics,Commands) {
namespace sitk = itk::simple;
sitk::Image image = sitk::ReadImage ( dataFinder.GetFile ( "Input/cthead1.png" ) );
sitk::Image labels = sitk::ReadImage ( dataFinder.GetFile ( "Input/2th_cthead1.mha" ) );
sitk::LabelStatisticsImageFilter stats;
ProgressUpdate progressCmd(stats);
stats.AddCommand(sitk::sitkProgressEvent, progressCmd);
CountCommand abortCmd(stats);
stats.AddCommand(sitk::sitkAbortEvent, abortCmd);
CountCommand deleteCmd(stats);
stats.AddCommand(sitk::sitkDeleteEvent, deleteCmd);
CountCommand endCmd(stats);
stats.AddCommand(sitk::sitkEndEvent, endCmd);
CountCommand iterCmd(stats);
stats.AddCommand(sitk::sitkIterationEvent, iterCmd);
CountCommand startCmd(stats);
stats.AddCommand(sitk::sitkStartEvent, startCmd);
CountCommand userCmd(stats);
stats.AddCommand(sitk::sitkUserEvent, userCmd);
stats.DebugOn();
stats.Execute ( image, labels );
EXPECT_EQ( stats.GetName(), "LabelStatisticsImageFilter" );
EXPECT_NO_THROW( stats.ToString() );
EXPECT_TRUE ( stats.HasLabel ( 0 ) );
EXPECT_TRUE ( stats.HasLabel ( 1 ) );
EXPECT_TRUE ( stats.HasLabel ( 2 ) );
EXPECT_FALSE ( stats.HasLabel ( 99 ) );
EXPECT_FALSE ( stats.HasLabel ( 1024 ) );
EXPECT_NEAR ( stats.GetMinimum ( 0 ), 0, 0.01 );
EXPECT_NEAR ( stats.GetMaximum ( 0 ), 99, 0.01 );
EXPECT_NEAR ( stats.GetMean ( 0 ), 13.0911, 0.001 );
EXPECT_NEAR ( stats.GetSigma ( 0 ), 16.4065, 0.01 );
EXPECT_NEAR ( stats.GetVariance ( 0 ), 269.173, 0.01 );
EXPECT_NEAR ( stats.GetCount ( 0 ), 36172, 0.01 );
EXPECT_NEAR ( stats.GetSum ( 0 ), 473533, 0.01 );
EXPECT_NEAR ( stats.GetMedian ( 0 ), 12.0, 0.001 );
ASSERT_EQ( 4u, stats.GetBoundingBox(0).size() );
EXPECT_EQ( 0, stats.GetBoundingBox(0)[0] );
EXPECT_EQ( 255, stats.GetBoundingBox(0)[1] );
EXPECT_EQ( 0, stats.GetBoundingBox(0)[2] );
EXPECT_EQ( 255, stats.GetBoundingBox(0)[3] );
EXPECT_EQ ( 1.0f, stats.GetProgress() );
EXPECT_EQ ( 1.0f, progressCmd.m_Progress );
EXPECT_EQ ( 0, abortCmd.m_Count );
EXPECT_EQ ( 1, endCmd.m_Count );
EXPECT_EQ ( 0, iterCmd.m_Count );
EXPECT_EQ ( 1, startCmd.m_Count );
EXPECT_EQ ( 0, userCmd.m_Count );
// internal filter does not get deleted since there are active measurements
EXPECT_EQ ( 0, deleteCmd.m_Count );
const std::vector<int64_t> myLabels = stats.GetLabels();
EXPECT_EQ ( myLabels.size() , 3u);
// const sitk::LabelStatisticsImageFilter::LabelStatisticsMap myMap = stats.GetLabelStatisticsMap();
// EXPECT_EQ( myLabels.size() , myMap.size() );
// const sitk::MeasurementMap myMeasurementMap = stats.GetMeasurementMap(0);
// EXPECT_EQ( myMeasurementMap.size(), 8u ); //4 measurements produced
// const sitk::BasicMeasurementMap myBasicMeasurementMap =
// myMeasurementMap.GetBasicMeasurementMap();
// EXPECT_EQ( myBasicMeasurementMap.size(), 8u ); //4 measurements produced
// EXPECT_EQ ( myMeasurementMap.ToString(), "Count, Maximum, Mean, Minimum, Sigma, Sum, Variance, approxMedian, \n36172, 99, 13.0911, 0, 16.4065, 473533, 269.173, 12, \n" );
}
|