File: simtools.cc

package info (click to toggle)
simutrans 111.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 13,504 kB
  • ctags: 12,645
  • sloc: cpp: 101,849; ansic: 3,466; makefile: 694; sh: 44
file content (324 lines) | stat: -rw-r--r-- 8,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#include <assert.h>
#include <math.h>
#include "simtools.h"

/* This is the mersenne random generator: More random and faster! */

/* Period parameters */
#define MERSENNE_TWISTER_N 624
#define M 397
#define MATRIX_A 0x9908b0dfUL   /* constant vector a */
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */

static unsigned long mersenne_twister[MERSENNE_TWISTER_N]; // the array for the state vector
static int mersenne_twister_index = MERSENNE_TWISTER_N + 1; // mersenne_twister_index==N+1 means mersenne_twister[N] is not initialized

static uint8 random_origin = 0;


/* initializes mersenne_twister[N] with a seed */
static void init_genrand(uint32 s)
{
	mersenne_twister[0]= s & 0xffffffffUL;
	for (mersenne_twister_index=1; mersenne_twister_index<MERSENNE_TWISTER_N; mersenne_twister_index++) {
		mersenne_twister[mersenne_twister_index] = (1812433253UL * (mersenne_twister[mersenne_twister_index-1] ^ (mersenne_twister[mersenne_twister_index-1] >> 30)) + mersenne_twister_index);
		/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
		/* In the previous versions, MSBs of the seed affect   */
		/* only MSBs of the array mersenne_twister[].                        */
		/* 2002/01/09 modified by Makoto Matsumoto             */
		mersenne_twister[mersenne_twister_index] &= 0xffffffffUL;
		/* for >32 bit machines */
	}
}


/* generate N words at one time */
static void MTgenerate(void)
{
	static uint32 mag01[2]={0x0UL, MATRIX_A};
	uint32 y;
	int kk;

	if (mersenne_twister_index == MERSENNE_TWISTER_N+1)   /* if init_genrand() has not been called, */
		init_genrand(5489UL); /* a default initial seed is used */

	for (kk=0;kk<MERSENNE_TWISTER_N-M;kk++) {
		y = (mersenne_twister[kk]&UPPER_MASK)|(mersenne_twister[kk+1]&LOWER_MASK);
		mersenne_twister[kk] = mersenne_twister[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
	}
	for (;kk<MERSENNE_TWISTER_N-1;kk++) {
		y = (mersenne_twister[kk]&UPPER_MASK)|(mersenne_twister[kk+1]&LOWER_MASK);
		mersenne_twister[kk] = mersenne_twister[kk+(M-MERSENNE_TWISTER_N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
	}
	y = (mersenne_twister[MERSENNE_TWISTER_N-1]&UPPER_MASK)|(mersenne_twister[0]&LOWER_MASK);
	mersenne_twister[MERSENNE_TWISTER_N-1] = mersenne_twister[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];

	mersenne_twister_index = 0;
}


// returns current seed value
uint32 get_random_seed()
{
	if (mersenne_twister_index >= MERSENNE_TWISTER_N) { /* generate N words at one time */
		MTgenerate();
	}
	return mersenne_twister[mersenne_twister_index];
}



/* generates a random number on [0,0xffffffff]-interval */
uint32 simrand_plain(void)
{
	uint32 y;

	if (mersenne_twister_index >= MERSENNE_TWISTER_N) { /* generate N words at one time */
		MTgenerate();
	}
	y = mersenne_twister[mersenne_twister_index++];

	/* Tempering */
	y ^= (y >> 11);
	y ^= (y << 7) & 0x9d2c5680UL;
	y ^= (y << 15) & 0xefc60000UL;
	y ^= (y >> 18);

	return y;
}


/* generates a random number on [0,max-1]-interval */
uint32 simrand(const uint32 max)
{
	assert( (random_origin&INTERACTIVE_RANDOM) == 0  );

	if(max<=1) {	// may rather assert this?
		return 0;
	}
	return simrand_plain() % max;
}


void clear_random_mode( uint16 mode )
{
	random_origin &= ~mode;
}


void set_random_mode( uint16 mode )
{
	random_origin |= mode;
}


uint16 get_random_mode()
{
	return random_origin;
}


static uint32 rand_seed = 12345678;

// simpler simrand for anything not game critical (like UI)
uint32 sim_async_rand( uint32 max )
{
	if(  max==0  ) {
		return 0;
	}
	rand_seed *= 3141592621u;
	rand_seed ++;

	return (rand_seed >> 8) % max;
}



static uint32 noise_seed = 0;

uint32 setsimrand(uint32 seed,uint32 ns)
{
	uint32 old_noise_seed = noise_seed;

	if(seed!=0xFFFFFFFF) {
		init_genrand( seed );
		rand_seed = seed;
		random_origin = 0;
	}
	if(noise_seed!=0xFFFFFFFF) {
		noise_seed = ns*15731;
	}
	return old_noise_seed;
}


static double int_noise(const long x, const long y)
{
	long n = x + y*101 + noise_seed;

	n = (n<<13) ^ n;
	return ( 1.0 - (double)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0);
}


static float *map = 0;
static sint32 map_w=0;

void init_perlin_map( sint32 w, sint32 h )
{
	map_w = w+2;
	map = new float[map_w*(h+2)];
	for(  sint32 y=0;  y<h+2;  y++ ) {
		for(  sint32 x=0;  x<map_w;  x++ ) {
			map[x+(y*map_w)] = (float)int_noise( x-1, y-1 );
		}
	}
}


void exit_perlin_map()
{
	map_w = 0;
	delete [] map;
	map = 0;
}


#define map_noise(x,y) (map[(x)+1+((y)+1)*map_w])


static double smoothed_noise(const int x, const int y)
{
	/* this gives a very smooth world */
	if(map) {
		const double corners =
			map_noise(x-1, y-1)+map_noise(x+1, y-1)+map_noise(x-1, y+1)+map_noise(x+1, y+1);

		const double sides =
			map_noise(x-1, y) + map_noise(x+1, y) + map_noise(x, y-1) + map_noise(x, y+1);

		const double center = map_noise(x, y);

		return (corners + sides+sides + center*4.0) / 16.0;
	}
	else {
		const double corners =
			int_noise(x-1, y-1)+int_noise(x+1, y-1)+int_noise(x-1, y+1)+int_noise(x+1, y+1);

		const double sides =
			int_noise(x-1, y) + int_noise(x+1, y) + int_noise(x, y-1) + int_noise(x, y+1);

		const double center = int_noise(x,y);

		return (corners + sides+sides + center*4.0) / 16.0;
	}


/* a hilly world
	const double sides   = ( int_noise(x-1, y) + int_noise(x+1, y) +
							 int_noise(x, y-1) + int_noise(x, y+1) );

	const double center  =  int_noise(x, y);

	return (sides+sides + center*4) / 8.0;
*/

// this gives very hilly world
//   return int_noise(x,y);
}

static double linear_interpolate(const double a, const double b, const double x)
{
//    return  a*(1.0-x) + b*x;
//    return  a - a*x + b*x;
	return  a + x*(b-a);
}


static double interpolated_noise(const double x, const double y)
{
// The function floor is needed because (int) rounds always towards zero,
// but we need integer_x be the biggest integer not bigger than x.
// So  (int)      -1.5  = -1.0
// But (int)floor(-1.5) = -2.0
// Modified 2008/10/17 by Gerd Wachsmuth
	const int    integer_X    = (int)floor(x);
	const int    integer_Y    = (int)floor(y);

	const double fractional_X = x - (double)integer_X;
	const double fractional_Y = y - (double)integer_Y;

	const double v1 = smoothed_noise(integer_X,     integer_Y);
	const double v2 = smoothed_noise(integer_X + 1, integer_Y);
	const double v3 = smoothed_noise(integer_X,     integer_Y + 1);
	const double v4 = smoothed_noise(integer_X + 1, integer_Y + 1);

	const double i1 = linear_interpolate(v1 , v2 , fractional_X);
	const double i2 = linear_interpolate(v3 , v4 , fractional_X);

	return linear_interpolate(i1 , i2 , fractional_Y);
}


/**
 * x,y Koordinaten des Punktes
 * p   Persistenz
 */
double perlin_noise_2D(const double x, const double y, const double p)
{
    double total = 0.0;
    for(  int  i=0;  i<6;  i++  ) {
		const double frequency = (double)(1 << i);
		const double amplitude = pow(p, (double)i);
		total += interpolated_noise( (x * frequency) / 64.0, (y * frequency) / 64.0) * amplitude;
    }

    return total;
}


// compute integer log10
uint32 log10(uint32 v)
{
	// taken from http://graphics.stanford.edu/~seander/bithacks.html
	// compute log2 first
	const uint32 b[] = { 0x2, 0xC, 0xF0, 0xFF00, 0xFFFF0000 };
	const uint32 S[] = { 1, 2, 4, 8, 16 };

	uint32 r = 0; // result of log2(v) will go here
	for(  int i = 4;  i >= 0;  i--  ) {
		if(  v & b[i]  ) {
			v >>= S[i];
			r |= S[i];
		}
	}
	uint32 t = ((r + 1) * 1233) >> 12; // 1 / log_2(10) ~~ 1233 / 4096
	return t;
}


// compute integer sqrt
uint32 sqrt_i32(uint32 num)
{
	// taken from http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
    uint32 res = 0;
    uint32 bit = 1 << 30; // The second-to-top bit is set: 1<<14 for short

    // "bit" starts at the highest power of four <= the argument.
    while(  bit > num  ) {
        bit >>= 2;
    }

    while(  bit != 0  ) {
        if(  num >= res + bit  ) {
            num -= res + bit;
            res = (res >> 1) + bit;
        }
        else {
            res >>= 1;
        }
        bit >>= 2;
    }
    return res;
}