1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
#include <assert.h>
#include <math.h>
#include "simtools.h"
/* This is the mersenne random generator: More random and faster! */
/* Period parameters */
#define MERSENNE_TWISTER_N 624
#define M 397
#define MATRIX_A 0x9908b0dfUL /* constant vector a */
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */
static unsigned long mersenne_twister[MERSENNE_TWISTER_N]; // the array for the state vector
static int mersenne_twister_index = MERSENNE_TWISTER_N + 1; // mersenne_twister_index==N+1 means mersenne_twister[N] is not initialized
static uint8 random_origin = 0;
/* initializes mersenne_twister[N] with a seed */
static void init_genrand(uint32 s)
{
mersenne_twister[0]= s & 0xffffffffUL;
for (mersenne_twister_index=1; mersenne_twister_index<MERSENNE_TWISTER_N; mersenne_twister_index++) {
mersenne_twister[mersenne_twister_index] = (1812433253UL * (mersenne_twister[mersenne_twister_index-1] ^ (mersenne_twister[mersenne_twister_index-1] >> 30)) + mersenne_twister_index);
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array mersenne_twister[]. */
/* 2002/01/09 modified by Makoto Matsumoto */
mersenne_twister[mersenne_twister_index] &= 0xffffffffUL;
/* for >32 bit machines */
}
}
/* generate N words at one time */
static void MTgenerate(void)
{
static uint32 mag01[2]={0x0UL, MATRIX_A};
uint32 y;
int kk;
if (mersenne_twister_index == MERSENNE_TWISTER_N+1) /* if init_genrand() has not been called, */
init_genrand(5489UL); /* a default initial seed is used */
for (kk=0;kk<MERSENNE_TWISTER_N-M;kk++) {
y = (mersenne_twister[kk]&UPPER_MASK)|(mersenne_twister[kk+1]&LOWER_MASK);
mersenne_twister[kk] = mersenne_twister[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
}
for (;kk<MERSENNE_TWISTER_N-1;kk++) {
y = (mersenne_twister[kk]&UPPER_MASK)|(mersenne_twister[kk+1]&LOWER_MASK);
mersenne_twister[kk] = mersenne_twister[kk+(M-MERSENNE_TWISTER_N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
}
y = (mersenne_twister[MERSENNE_TWISTER_N-1]&UPPER_MASK)|(mersenne_twister[0]&LOWER_MASK);
mersenne_twister[MERSENNE_TWISTER_N-1] = mersenne_twister[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];
mersenne_twister_index = 0;
}
// returns current seed value
uint32 get_random_seed()
{
if (mersenne_twister_index >= MERSENNE_TWISTER_N) { /* generate N words at one time */
MTgenerate();
}
return mersenne_twister[mersenne_twister_index];
}
/* generates a random number on [0,0xffffffff]-interval */
uint32 simrand_plain(void)
{
uint32 y;
if (mersenne_twister_index >= MERSENNE_TWISTER_N) { /* generate N words at one time */
MTgenerate();
}
y = mersenne_twister[mersenne_twister_index++];
/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return y;
}
/* generates a random number on [0,max-1]-interval */
uint32 simrand(const uint32 max)
{
assert( (random_origin&INTERACTIVE_RANDOM) == 0 );
if(max<=1) { // may rather assert this?
return 0;
}
return simrand_plain() % max;
}
void clear_random_mode( uint16 mode )
{
random_origin &= ~mode;
}
void set_random_mode( uint16 mode )
{
random_origin |= mode;
}
uint16 get_random_mode()
{
return random_origin;
}
static uint32 rand_seed = 12345678;
// simpler simrand for anything not game critical (like UI)
uint32 sim_async_rand( uint32 max )
{
if( max==0 ) {
return 0;
}
rand_seed *= 3141592621u;
rand_seed ++;
return (rand_seed >> 8) % max;
}
static uint32 noise_seed = 0;
uint32 setsimrand(uint32 seed,uint32 ns)
{
uint32 old_noise_seed = noise_seed;
if(seed!=0xFFFFFFFF) {
init_genrand( seed );
rand_seed = seed;
random_origin = 0;
}
if(noise_seed!=0xFFFFFFFF) {
noise_seed = ns*15731;
}
return old_noise_seed;
}
static double int_noise(const long x, const long y)
{
long n = x + y*101 + noise_seed;
n = (n<<13) ^ n;
return ( 1.0 - (double)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0);
}
static float *map = 0;
static sint32 map_w=0;
void init_perlin_map( sint32 w, sint32 h )
{
map_w = w+2;
map = new float[map_w*(h+2)];
for( sint32 y=0; y<h+2; y++ ) {
for( sint32 x=0; x<map_w; x++ ) {
map[x+(y*map_w)] = (float)int_noise( x-1, y-1 );
}
}
}
void exit_perlin_map()
{
map_w = 0;
delete [] map;
map = 0;
}
#define map_noise(x,y) (map[(x)+1+((y)+1)*map_w])
static double smoothed_noise(const int x, const int y)
{
/* this gives a very smooth world */
if(map) {
const double corners =
map_noise(x-1, y-1)+map_noise(x+1, y-1)+map_noise(x-1, y+1)+map_noise(x+1, y+1);
const double sides =
map_noise(x-1, y) + map_noise(x+1, y) + map_noise(x, y-1) + map_noise(x, y+1);
const double center = map_noise(x, y);
return (corners + sides+sides + center*4.0) / 16.0;
}
else {
const double corners =
int_noise(x-1, y-1)+int_noise(x+1, y-1)+int_noise(x-1, y+1)+int_noise(x+1, y+1);
const double sides =
int_noise(x-1, y) + int_noise(x+1, y) + int_noise(x, y-1) + int_noise(x, y+1);
const double center = int_noise(x,y);
return (corners + sides+sides + center*4.0) / 16.0;
}
/* a hilly world
const double sides = ( int_noise(x-1, y) + int_noise(x+1, y) +
int_noise(x, y-1) + int_noise(x, y+1) );
const double center = int_noise(x, y);
return (sides+sides + center*4) / 8.0;
*/
// this gives very hilly world
// return int_noise(x,y);
}
static double linear_interpolate(const double a, const double b, const double x)
{
// return a*(1.0-x) + b*x;
// return a - a*x + b*x;
return a + x*(b-a);
}
static double interpolated_noise(const double x, const double y)
{
// The function floor is needed because (int) rounds always towards zero,
// but we need integer_x be the biggest integer not bigger than x.
// So (int) -1.5 = -1.0
// But (int)floor(-1.5) = -2.0
// Modified 2008/10/17 by Gerd Wachsmuth
const int integer_X = (int)floor(x);
const int integer_Y = (int)floor(y);
const double fractional_X = x - (double)integer_X;
const double fractional_Y = y - (double)integer_Y;
const double v1 = smoothed_noise(integer_X, integer_Y);
const double v2 = smoothed_noise(integer_X + 1, integer_Y);
const double v3 = smoothed_noise(integer_X, integer_Y + 1);
const double v4 = smoothed_noise(integer_X + 1, integer_Y + 1);
const double i1 = linear_interpolate(v1 , v2 , fractional_X);
const double i2 = linear_interpolate(v3 , v4 , fractional_X);
return linear_interpolate(i1 , i2 , fractional_Y);
}
/**
* x,y Koordinaten des Punktes
* p Persistenz
*/
double perlin_noise_2D(const double x, const double y, const double p)
{
double total = 0.0;
for( int i=0; i<6; i++ ) {
const double frequency = (double)(1 << i);
const double amplitude = pow(p, (double)i);
total += interpolated_noise( (x * frequency) / 64.0, (y * frequency) / 64.0) * amplitude;
}
return total;
}
// compute integer log10
uint32 log10(uint32 v)
{
// taken from http://graphics.stanford.edu/~seander/bithacks.html
// compute log2 first
const uint32 b[] = { 0x2, 0xC, 0xF0, 0xFF00, 0xFFFF0000 };
const uint32 S[] = { 1, 2, 4, 8, 16 };
uint32 r = 0; // result of log2(v) will go here
for( int i = 4; i >= 0; i-- ) {
if( v & b[i] ) {
v >>= S[i];
r |= S[i];
}
}
uint32 t = ((r + 1) * 1233) >> 12; // 1 / log_2(10) ~~ 1233 / 4096
return t;
}
// compute integer sqrt
uint32 sqrt_i32(uint32 num)
{
// taken from http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
uint32 res = 0;
uint32 bit = 1 << 30; // The second-to-top bit is set: 1<<14 for short
// "bit" starts at the highest power of four <= the argument.
while( bit > num ) {
bit >>= 2;
}
while( bit != 0 ) {
if( num >= res + bit ) {
num -= res + bit;
res = (res >> 1) + bit;
}
else {
res >>= 1;
}
bit >>= 2;
}
return res;
}
|