1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
#include <boost/bind.hpp>
#include <iostream>
#include "messagebasictypes.h"
#include "messagecomplextypes.h"
#include "messagesinfotypes.h"
#include "messagestlcontainertypes.h"
#include "measureserver.h"
#include "meminfometer.h"
#include "loadavgmeter.h"
#include "cpuinfometer.h"
#include "unamemeter.h"
#include "uptimemeter.h"
#include "usersmeter.h"
#include "sinfobroadcastids.h"
using namespace std;
using namespace Msg;
// constants for the broadcasting timing
////////////////////////////////////////
// if sinfo produces to much net load for your purposes,
// you may twiddle with the following factors.
// don't send informations to sinfo if the computer was last heard
// for the last 25 seconds
// FIXME ? implement this again?
// const unsigned long dropoldTimer = 25;
// check the cpu-load every second....
// if the load has not changed (less 3%),
// broadcast every 10 seconds otherwise broadcast every second.
// if the CPU load has changed much (groeter 30%) trigger the
// sending of the process informations.
const unsigned long cpustatTimer = 1;
const unsigned long cpustatTimerMax = 10;
const float cpustatTimerFastThr = 0.05; // fastBcast threshold in percentage of idle time
const float cpustatTimerProcinfoThr = 0.3; // sendProcinfo threshold in percentage of idle time
const unsigned long loadavgTimer = 10;
const unsigned long uptimeTimer = 10;
const unsigned long procinfoTimer = 10;
const unsigned long netloadTimer = 10;
const unsigned long diskloadTimer = 10;
const unsigned long meminfoTimer = 30;
const unsigned long usersTimer = 30;
const unsigned long unamestrTimer = 900;
const unsigned long cpuinfoTimer = 60;
const unsigned long markerTimer = 900;
// if we received a restart flag we will send out ALL informations
// several times with a broadcasting intervall of 10 seconds.
const unsigned long restartTimer = 10;
MeasureServer::MeasureServer(boost::asio::io_service& io_service, const std::string & networkcard, const std::string & _marker, bool cmdlinemode, std::list < std::string > ignoreList, long listtop):ioservice(io_service), timer(io_service), procinfoMeter(cmdlinemode,ignoreList), listtop(listtop), netloadMeter(networkcard), marker(_marker)
{
timeCounter = 0;
procinfonow = false;
sendRestartFlag = true;
lastidlepercent = 0.;
timer.expires_from_now(boost::posix_time::milliseconds(500));
timer.async_wait(boost::bind(&MeasureServer::handle_timeout, this));
restartcounter=0;
}
MeasureServer::~MeasureServer()
{
}
void MeasureServer::timerEvent()
{
Message message;
if (0 == (timeCounter%meminfoTimer))
{
Meminfo meminfo;
if (getMeminfo(meminfo))
{
pushFrontMeminfo(message, meminfo);
pushFrontuint8(message, meminfoFlag);
}
}
if (0 == (timeCounter%loadavgTimer))
{
Loadavg loadavg;
if (getLoadavg(loadavg))
{
pushFrontLoadavg(message, loadavg);
pushFrontuint8(message, loadavgFlag);
}
}
if (0 == (timeCounter%cpustatTimer))
{
Cpustat cpustat;
if (cpustatMeter.getCpustat(cpustat))
{
if ((0 == timeCounter)
|| (fabs(lastidlepercent - cpustat.idlep) >= cpustatTimerFastThr)
|| (0==(timeCounter%cpustatTimerMax)) )
{
if (fabs(lastidlepercent - cpustat.idlep) >= cpustatTimerProcinfoThr)
procinfonow = true;
pushFrontCpustat(message, cpustat);
pushFrontuint8(message, cpustatFlag);
lastidlepercent = cpustat.idlep;
}
}
}
if (0 == (timeCounter%cpuinfoTimer))
{
Cpuinfo cpuinfo;
if (getCpuinfo(cpuinfo))
{
pushFrontCpuinfo(message, cpuinfo);
pushFrontuint8(message, cpuinfoFlag);
}
}
if (0 == (timeCounter%markerTimer))
{
pushFrontstring(message, marker);
pushFrontuint8(message, markerFlag);
}
if (0 == (timeCounter%netloadTimer))
{
Netload netload;
if (netloadMeter.getNetload(netload))
{
pushFrontNetload(message, netload);
pushFrontuint8(message, netloadFlag);
}
}
if (0 == (timeCounter%diskloadTimer))
{
Diskload diskload;
if (diskloadMeter.getDiskload(diskload))
{
pushFrontDiskload(message, diskload);
pushFrontuint8(message, diskloadFlag);
}
}
if (0 == (timeCounter%unamestrTimer))
{
Unameinfo unameinfo = getUnameinfo();
pushFrontUnameinfo(message, unameinfo);
pushFrontuint8(message, unameinfoFlag);
}
if (0 == (timeCounter%uptimeTimer))
{
Uptime uptime;
if (getUptime(uptime))
{
pushFrontUptime(message, uptime);
pushFrontuint8(message, uptimeFlag);
}
}
if (0 == (timeCounter%usersTimer))
{
Users users = getUsers();
pushFrontUsers(message, users);
pushFrontuint8(message, usersFlag);
}
if ( (0 == (timeCounter%procinfoTimer)) || (procinfonow) )
{
ProcinfoList procinfoList;
if (procinfoMeter.getTopList(listtop, procinfoList))
{
pushFront(message, procinfoList);
pushFrontuint8(message, procinfoFlag);
}
procinfonow = false;
}
if (sendRestartFlag)
{
pushFrontuint8(message, restartFlag);
sendRestartFlag = false;
}
if (message.size()>0)
{
// try-catch to avoid stop of program when udp port is not available due to
// reconfiguration (e.g. ipatbles)
try
{
cout << "MeasureServer::timerEvent sending " << message.size() << "bytes" << endl;
sendMeasurementSignal(message);
}
catch (std::exception& e)
{
cerr << "Exception: " << e.what() << endl;
}
}
timeCounter++;
if ( (restartcounter>0) && (0 == (timeCounter%restartTimer)) )
{
timeCounter = 0;
restartcounter--;
}
}
void MeasureServer::restartCounterEvent()
{
restartcounter=3;
}
void MeasureServer::handle_timeout()
{
cout << "MeasureServer::handle_timeout" << endl;
timerEvent();
timer.expires_from_now(boost::posix_time::milliseconds(1000));
timer.async_wait(boost::bind(&MeasureServer::handle_timeout, this));
}
|