File: LLL.cc

package info (click to toggle)
singular 1%3A4.0.3-p3%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 33,040 kB
  • ctags: 19,347
  • sloc: cpp: 271,589; ansic: 13,500; lisp: 4,242; yacc: 1,656; lex: 1,377; makefile: 1,264; perl: 632; sh: 467; python: 233; xml: 182
file content (590 lines) | stat: -rw-r--r-- 13,338 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
#ifndef LLL_CC
#define LLL_CC

#include "LLL.h"

// subroutines for the LLL-algorithms

void REDI_KB(const short& k, const short& l, BigInt** b,
             const short& number_of_vectors, const short& vector_dimension,
             BigInt** H, BigInt* d, BigInt** lambda)
// the REDI procedure for relations(...) (to compute the Kernel Basis,
// algorithm 2.7.2 in Cohen's book)
{
#ifdef GMP
  if(abs(BigInt(2)*lambda[k][l])<=d[l+1])
#else   // GMP
  if(labs(2*lambda[k][l])<=d[l+1])
    // labs is the abs-function for long ints
#endif  // GMP
    return;

#ifdef GMP
  BigInt q=(BigInt(2)*lambda[k][l]+d[l+1])/(BigInt(2)*d[l+1]);
#else   // GMP
  long q=(long int) floor(((float)(2*lambda[k][l]+d[l+1]))/(2*d[l+1]));
#endif  // GMP

  // q is the integer quotient of the division
  // (2*lambda[k][l]+d[l+1])/(2*d[l+1]).
  // Because of the rounding mode (always towards zero) of GNU C++,
  // we cannot use the built-in integer division
  // here; it causes errors when dealing with negative numbers. Therefore
  // the complicated casts: The divident is first casted to a float which
  // causes the division result to be a float. This result is explicitly
  // rounded downwards. As the floor-function returns a double (for range
  // reasons), this has to be casted to an integer again.

  for(short n=0;n<number_of_vectors;n++)
    H[k][n]-=q*H[l][n];
  // H[k]=H[k]-q*H[l]

  for(short m=0;m<vector_dimension;m++)
    b[k][m]-=q*b[l][m];
  // b[k]=b[k]-q*b[l]

  lambda[k][l]-=q*d[l+1];

  for(short i=0;i<=l-1;i++)
    lambda[k][i]-=q*lambda[l][i];
}




void REDI_IL(const short& k, const short& l, BigInt** b,
             const short& vector_dimension, BigInt* d, BigInt** lambda)
// the REDI procedure for the integer LLL algorithm (algorithm 2.6.7 in
// Cohen's book)
{
#ifdef GMP
  if(abs(BigInt(2)*lambda[k][l])<=d[l+1])
#else   // GMP
  if(labs(2*lambda[k][l])<=d[l+1])
    // labs is the abs-function for long ints
#endif  // GMP
    return;

#ifdef GMP
  BigInt q=(BigInt(2)*lambda[k][l]+d[l+1])/(BigInt(2)*d[l+1]);
#else   // GMP
  long q=(long int) floor(((float)(2*lambda[k][l]+d[l+1]))/(2*d[l+1]));
#endif  // GMP

  // q is the integer quotient of the division
  // (2*lambda[k][l]+d[l+1])/(2*d[l+1]).
  // Because of the rounding mode (always towards zero) of GNU C++,
  // we cannot use the built-in integer division
  // here; it causes errors when dealing with negative numbers. Therefore
  // the complicated casts: The divident is first casted to a float which
  // causes the division result to be a float. This result is explicitly
  // rounded downwards. As the floor-function returns a double (for range
  // reasons), this has to be casted to an integer again.

  for(short m=0;m<vector_dimension;m++)
    b[k][m]-=q*b[l][m];
  // b[k]=b[k]-q*b[l]

  lambda[k][l]-=q*d[l+1];

  for(short i=0;i<=l-1;i++)
    lambda[k][i]-=q*lambda[l][i];
}




void SWAPI(const short& k, const short& k_max, BigInt** b, BigInt* d,
           BigInt** lambda)
// the SWAPI procedure of algorithm 2.6.7
{

  // exchange b[k] and b[k-1]
  // This can be done efficiently by swapping pointers (not entries).
  BigInt* swap=b[k];
  b[k]=b[k-1];
  b[k-1]=swap;

  if(k>1)
    for(short j=0;j<=k-2;j++)
    {
      // exchange lambda[k][j] and lambda[k-1][j]
      BigInt swap=lambda[k][j];
      lambda[k][j]=lambda[k-1][j];
      lambda[k-1][j]=swap;
    }

  BigInt _lambda=lambda[k][k-1];

  BigInt B=(d[k-1]*d[k+1] + _lambda*_lambda)/d[k];
  // It might be better to choose another evaluation order for this formula,
  // see below.

  for(short i=k+1;i<=k_max;i++)
  {
    BigInt t=lambda[i][k];
    lambda[i][k]=(d[k+1]*lambda[i][k-1] - _lambda*t)/d[k];
    lambda[i][k-1]=(B*t + _lambda*lambda[i][k])/d[k+1];
  }

  d[k]=B;
}




void SWAPK(const short& k, const short& k_max, BigInt** b, BigInt** H,
           char *f, BigInt* d, BigInt** lambda)
// the SWAPK procedure of algorithm 2.7.2
{
  // exchange H[k] and H[k-1]
  // This can be done efficiently by swapping pointers (not entries).
  BigInt *swap=H[k];
  H[k]=H[k-1];
  H[k-1]=swap;

  // exchange b[k] and b[k-1] by the same method
  swap=b[k];
  b[k]=b[k-1];
  b[k-1]=swap;

  if(k>1)
    for(short j=0;j<=k-2;j++)
    {
      // exchange lambda[k][j] and lambda[k-1][j]
      BigInt swap=lambda[k][j];
      lambda[k][j]=lambda[k-1][j];
      lambda[k-1][j]=swap;
    }

  BigInt _lambda=lambda[k][k-1];

  if(_lambda==BigInt(0))
  {
    d[k]=d[k-1];
    f[k-1]=0;
    f[k]=1;
    lambda[k][k-1]=0;
    for(short i=k+1;i<=k_max;i++)
    {
      lambda[i][k]=lambda[i][k-1];
      lambda[i][k-1]=0;
    }
  }
  else
    // lambda!=0
  {
    for(short i=k+1;i<=k_max;i++)
      lambda[i][k-1]=(_lambda*lambda[i][k-1])/d[k];

    // Multiplie lambda[i][k-1] by _lambda/d[k].
    // One could also write
    //   lambda[i][k-1]*=(lambda/d[k]);   (*)
    // Without a BigInt class, this can prevent overflows when computing
    // _lambda*lambda[i][k-1].
    // But examples show that lambda/d[k] is in general not an integer.
    // So (*) could lead to problems due to the inexact floating point
    // arithmetic...
    // Therefore, we chose the secure evaluation order in all such cases.

    BigInt t=d[k+1];
    d[k]=(_lambda*_lambda)/d[k];
    d[k+1]=d[k];

    for(short j=k+1;j<=k_max-1;j++)
      for(short i=j+1;i<=k_max;i++)
        lambda[i][j]=(lambda[i][j]*d[k])/t;

    for(short j=k+1;j<=k_max;j++)
      d[j+1]=(d[j+1]*d[k])/t;
  }

}

typedef BigInt* BigIntP;


short relations(BigInt **b, const short& number_of_vectors,
                const short& vector_dimension, BigInt**& H)
{

// first check arguments

  if(number_of_vectors<0)
  {
    cerr<<"\nWARNING: short relations(BigInt**, const short&, const short&, "
      "BigInt**):\nargument number_of_vectors out of range"<<endl;
    return -1;
  }

  if(vector_dimension<=0)
  {
    cerr<<"\nWARNING: short relations(BigInt**, const short&, const short&, "
      "BigInt**):\nargument vector_dimension out of range"<<endl;
    return -1;
  }


// consider special case

  if(number_of_vectors==1)
    // Only one vector which has no relations if it is not zero,
    // else relation 1.
  {
    short r=1;    // Suppose the only column of the matrix is zero.

    for(short m=0;m<vector_dimension;m++)
      if(b[0][m]!=BigInt(0))
        // nonzero entry detected
        r=0;

    if(r==1)
    {
      H=new BigIntP[1];
      H[0]=new BigInt[1];
      H[0][0]=1;
      // This is the lattice basis of the relations...
    }

    return r;
  }


// memory allocation

// The names are chosen (as far as possible) according to Cohen's book.
// However, for technical reasons, the indices do not run from 1 to
// (e.g.) number_of_vectors, but from 0 to number_of_vectors-1.
// Therefore all indices are shifted by -1 in comparison with this book,
// except from the indices of the array d which has size
// number_of_vectors+1.

  H=new BigIntP[number_of_vectors];
  for(short n=0;n<number_of_vectors;n++)
    H[n]=new BigInt[number_of_vectors];

  char* f=new char[number_of_vectors];

  BigInt* d=new BigInt[number_of_vectors+1];

  BigInt** lambda=new BigIntP[number_of_vectors];
  for(short n=1;n<number_of_vectors;n++)
    lambda[n]=new BigInt[n];
  // We only need lambda[n][k] for n>k.



// Step 1: Initialization

  short k=1;
  short k_max=0;
  // for iteration

  d[0]=1;

  BigInt t=0;
  for(short m=0;m<vector_dimension;m++)
    t+=b[0][m]*b[0][m];
  // Now, t is the scalar product of b[0] with itself.

  for(short n=0;n<number_of_vectors;n++)
    for(short l=0;l<number_of_vectors;l++)
      if(n==l)
        H[n][l]=1;
      else
        H[n][l]=0;
  // Now, H equals the matrix I_(number_of_vectors).

  if(t!=BigInt(0))
  {
    d[1]=t;
    f[0]=1;
  }
  else
  {
    d[1]=1;
    f[0]=0;
  }



// The other steps are not programmed with "goto" as in Cohen's book.
// Instead, we enter a do-while-loop which terminates iff
// k>=number_of_vectors.

  do
  {


// Step 2: Incremental Gram-Schmidt

    if(k>k_max)
      // else we can immediately go to step 3.
    {
      k_max=k;

      for(short j=0;j<=k;j++)
        if((f[j]==0) && (j<k))
          lambda[k][j]=0;
        else
        {
          BigInt u=0;

          // compute scalar product of b[k] and b[j]
          for(short m=0;m<vector_dimension;m++)
            u+=b[k][m]*b[j][m];

          for(short i=0;i<=j-1;i++)
            if(f[i]!=0)
              u=(d[i+1]*u-lambda[k][i]*lambda[j][i])/d[i];

          if(j<k)
            lambda[k][j]=u;
          else
            // j==k
            if(u!=BigInt(0))
            {
              d[k+1]=u;
              f[k]=1;
            }
            else
              // u==0
            {
              d[k+1]=d[k];
              f[k]=0;
            }
        }
    }


// Step 3: Test f[k]==0 and f[k-1]!=0

    do
    {
      if(f[k-1]!=0)
        REDI_KB(k,k-1,b,number_of_vectors,vector_dimension,H,d,lambda);

      if((f[k-1]!=0) && (f[k]==0))
      {
        SWAPK(k,k_max,b,H,f,d,lambda);

        if(k>1)
          k--;
        else
          k=1;
        // k=max(1,k-1)
      }

      else
        break;
    }
    while(1);

    // Now the conditions above are no longer satisfied.

    for(short l=k-2;l>=0;l--)
      if(f[l]!=0)
        REDI_KB(k,l,b,number_of_vectors,vector_dimension,H,d,lambda);
    k++;


// Step 4: Finished?

  }
  while(k<number_of_vectors);



// Now we have computed a lattice basis of the relations of the b[i].
// Prepare the LLL-reduction.

  // Compute the dimension r of the relations.
  short r=0;
  for(short n=0;n<number_of_vectors;n++)
    if(f[n]==0) // n==r!!
      r++;
    else
      break;

  // Delete the part of H that is no longer needed (especially the vectors
  // H[r],...,H[number_of_vectors-1]).
  BigInt **aux=H;
  if(r>0)
    H=new BigIntP[r];
  for(short i=0;i<r;i++)
    H[i]=aux[i];

  for(short i=r;i<number_of_vectors;i++)
    delete[] aux[i];
  delete[] aux;

  delete[] f;

  delete[] d;

  for(short i=1;i<number_of_vectors;i++)
    delete[] lambda[i];
  delete[] lambda;

  integral_LLL(H,r,number_of_vectors);

  return r;

}




short integral_LLL(BigInt** b, const short& number_of_vectors,
                  const short& vector_dimension)
{

// first check arguments

  if(number_of_vectors<0)
  {
    cerr<<"\nWARNING: short integral_LL(BigInt**, const short&, const short&):"
      "\nargument number_of_vectors out of range"<<endl;
    return -1;
  }

  if(vector_dimension<=0)
  {
    cerr<<"\nWARNING: short integral_LLL(BigInt**, const short&, const "
      "short&):\nargument vector_dimension out of range"<<endl;
    return -1;
  }


// consider special case

  if(number_of_vectors<=1)
    // 0 or 1 input vector, nothing to be done
    return 0;


// memory allocation

// The names are chosen (as far as possible) according to Cohen's book.
// However, for technical reasons, the indices do not run from 1 to
// (e.g.) number_of_vectors, but from 0 to number_of_vectors-1.
// Therefore all indices are shifted by -1 in comparison with this book,
// except from the indices of the array d which has size
// number_of_vectors+1.

  BigInt* d=new BigInt[number_of_vectors+1];

  BigInt** lambda=new BigIntP[number_of_vectors];
  for(short s=1;s<number_of_vectors;s++)
    lambda[s]=new BigInt[s];
  // We only need lambda[n][k] for n>k.



// Step 1: Initialization

  short k=1;
  short k_max=0;
  // for iteration
  d[0]=1;

  d[1]=0;
  for(short n=0;n<vector_dimension;n++)
    d[1]+=b[0][n]*b[0][n];
  // Now, d[1] is the scalar product of b[0] with itself.


// The other steps are not programmed with "goto" as in Cohen's book.
// Instead, we enter a do-while-loop which terminates iff k>r.

  do
  {


// Step 2: Incremental Gram-Schmidt

    if(k>k_max)
      // else we can immediately go to step 3.
    {
      k_max=k;

      for(short j=0;j<=k;j++)
      {
        BigInt u=0;
        // compute scalar product of b[k] and b[j]
        for(short n=0;n<vector_dimension;n++)
          u+=b[k][n]*b[j][n];

        for(short i=0;i<=j-1;i++)
        {
          u*=d[i+1];
          u-=lambda[k][i]*lambda[j][i];
          u/=d[i];

          //u=(d[i+1]*u-lambda[k][i]*lambda[j][i])/d[i];
        }

        if(j<k)
          lambda[k][j]=u;
        else
          // j==k
          d[k+1]=u;
      }

      if(d[k+1]==BigInt(0))
      {
        cerr<<"\nERROR: void integral_LLL(BigInt**, const short&, const "
          "short&):\ninput vectors must be linearly independent"<<endl;
        return -1;
      }
    }


// Step 3: Test LLL-condition

    do
    {
      REDI_IL(k,k-1,b,vector_dimension,d,lambda);

      //if(4*d[k+1]*d[k-1] < 3*d[k]*d[k] - lambda[k][k-1]*lambda[k][k-1])
      if((BigInt(4))*d[k+1]*d[k-1]
          < (BigInt(3))*d[k]*d[k] - lambda[k][k-1]*lambda[k][k-1])
      {
        SWAPI(k,k_max,b,d,lambda);
        if(k>1)
          k--;
        // k=max(1,k-1)
      }
      else
        break;

    }
    while(1);

    // Now the condition above is no longer satisfied.

    for(short l=k-2;l>=0;l--)
      REDI_IL(k,l,b,vector_dimension,d,lambda);
    k++;



// Step 4: Finished?

  }
  while(k<number_of_vectors);


// Now, b contains the LLL-reduced lattice basis.
// Memory cleanup.

  delete[] d;

  for(short i=1;i<number_of_vectors;i++)
    delete[] lambda[i];
  delete[] lambda;

  return 0;

}
#endif  // LLL_CC