1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
|
// matrix.cc
// implementation of class matrix
#ifndef MATRIX_CC
#define MATRIX_CC
#include "matrix.h"
////////////// constructors and destructor //////////////////////////////////
typedef Integer* IntegerP;
typedef BigInt* BigIntP;
matrix::matrix(const int& row_number, const int& column_number)
:rows(row_number),columns(column_number)
{
_kernel_dimension=-2;
// LLL-algorithm not yet performed
// argument check
if((rows<=0)||(columns<=0))
// bad input, set "error flag"
{
cerr<<"\nWARNING: matrix::matrix(const int&, const int&):\n"
"argument out of range"<<endl;
columns=-1;
return;
}
// memory allocation and initialization
coefficients=new IntegerP[rows];
for(int i=0;i<rows;i++)
coefficients[i]=new Integer[columns];
for(int i=0;i<rows;i++)
for(int j=0;j<columns;j++)
coefficients[i][j]=0;
}
matrix::matrix(const int& row_number, const int& column_number,
Integer** entries)
:rows(row_number),columns(column_number)
{
_kernel_dimension=-2;
// LLL-algorithm not yet performed
// argument check
if((rows<=0)||(columns<=0))
// bad input, set "error flag"
{
cerr<<"\nWARNING: matrix::matrix(const int&, const int&, Integr**):\n"
"argument out of range"<<endl;
columns=-1;
return;
}
// memory allocation and initialization
coefficients=new IntegerP[rows];
for(int i=0;i<rows;i++)
coefficients[i]=new Integer[columns];
for(int i=0;i<rows;i++)
for(int j=0;j<columns;j++)
coefficients[i][j]=entries[i][j];
// coefficients[i] is the i-th row vector
}
matrix::matrix(ifstream& input)
{
_kernel_dimension=-2;
// LLL-algorithm not yet performed
input>>rows;
if(!input)
// input failure, set "error flag"
{
cerr<<"\nWARNING: matrix::matrix(ifstream&): input failure"<<endl;
columns=-2;
return;
}
input>>columns;
if(!input)
// input failure, set "error flag"
{
cerr<<"\nWARNING: matrix::matrix(ifstream&): input failure"<<endl;
columns=-2;
return;
}
if((rows<=0)||(columns<=0))
// bad input, set "error flag"
{
cerr<<"\nWARNING: matrix::matrix(ifstream&): bad input"<<endl;
columns=-1;
return;
}
coefficients=new IntegerP[rows];
for(int i=0;i<rows;i++)
coefficients[i]=new Integer[columns];
for(int i=0;i<rows;i++)
for(int j=0;j<columns;j++)
{
input>>coefficients[i][j];
if(!input)
// bad input, set error flag
{
cerr<<"\nWARNING: matrix::matrix(ifstream&): input failure"<<endl;
columns=-2;
return;
}
}
}
matrix::matrix(const int& m, const int& n, ifstream& input)
{
_kernel_dimension=-2;
// LLL-algorithm not yet performed
// argument check
if((m<=0) || (n<=0))
// bad input, set "error flag"
{
cerr<<"\nWARNING: matrix::matrix(const int&, const int&, ifstream&):\n"
"argument out of range"<<endl;
columns=-1;
return;
}
rows=m;
columns=n;
// memory allocation and initialization
coefficients=new IntegerP[rows];
for(int i=0;i<rows;i++)
coefficients[i]=new Integer[columns];
for(int i=0;i<rows;i++)
for(int j=0;j<columns;j++)
{
input>>coefficients[i][j];
if(!input)
// bad input, set error flag
{
columns=-2;
return;
}
}
}
matrix::matrix(const matrix& A)
:rows(A.rows),columns(A.columns),_kernel_dimension(A._kernel_dimension)
{
if(columns<0)
{
cerr<<"\nWARNING: matrix::matrix(const matrix&):\n"
"Building a matrix from a corrupt one"<<endl;
return;
}
// memory allocation and initialization (also for H)
coefficients=new IntegerP[rows];
for(int i=0;i<rows;i++)
coefficients[i]=new Integer[columns];
for(int i=0;i<rows;i++)
for(int j=0;j<columns;j++)
coefficients[i][j]=A.coefficients[i][j];
if(_kernel_dimension>0)
{
H=new BigIntP[_kernel_dimension];
for(int k=0;k<_kernel_dimension;k++)
H[k]=new BigInt[columns];
for(int k=0;k<_kernel_dimension;k++)
for(int j=0;j<columns;j++)
H[k][j]=(A.H)[k][j];
}
}
matrix::~matrix()
{
for(int i=0;i<rows;i++)
delete[] coefficients[i];
delete[] coefficients;
if(_kernel_dimension>0)
// LLL-algorithm performed
{
for(int i=0;i<_kernel_dimension;i++)
delete[] H[i];
delete[] H;
}
}
//////////////////// object properties //////////////////////////////////////
BOOLEAN matrix::is_nonnegative() const
{
for(int i=0;i<rows;i++)
for(int j=0;j<columns;j++)
if(coefficients[i][j]<0)
return FALSE;
return TRUE;
}
int matrix::error_status() const
{
if(columns<0)
return columns;
else
return 0;
}
int matrix::row_number() const
{
return rows;
}
int matrix::column_number() const
{
return columns;
}
////////// special routines for the IP-algorithms /////////////////////////
int matrix::LLL_kernel_basis()
{
// copy the column vectors of the actual matrix
// (They are modified by the LLL-algorithm!)
BigInt** b=new BigIntP[columns];
for(int n=0;n<columns;n++)
b[n]=new BigInt[rows];
for(int n=0;n<columns;n++)
for(int m=0;m<rows;m++)
b[n][m]=coefficients[m][n];
// compute a LLL-reduced basis of the relations of b[0],...,b[columns-1]
_kernel_dimension=relations(b,columns,rows,H);
// The kernel lattice basis is now stored in the member H (vectors
// H[0],...,H[_kernel_dimension-1]).
// delete auxiliary vectors
for(int n=0;n<columns;n++)
delete[] b[n];
delete[] b;
return _kernel_dimension;
}
int matrix::compute_nonzero_kernel_vector()
{
if(_kernel_dimension==-2)
// lattice basis not yet computed
LLL_kernel_basis();
if(_kernel_dimension==-1)
{
cerr<<"\nWARNING: int matrix::compute_non_zero_kernel_vector(BigInt*&):"
"\nerror in kernel basis, cannot compute the desired vector"<<endl;
return 0;
}
if(_kernel_dimension==0)
{
cerr<<"\nWARNING: int matrix::compute_non_zero_kernel_vector(BigInt*&): "
"\nkernel dimension is zero"<<endl;
return 0;
}
// Now, the kernel dimension is positive.
BigInt *M=new BigInt[_kernel_dimension];
// M stores a number by which the algorithm decides which vector to
// take next.
// STEP 1: Determine the vector with the least zero components (if it is not
// unique, choose the smallest).
// determine number of zero components
for(int i=0;i<_kernel_dimension;i++)
{
M[i]=0;
for(int j=0;j<columns;j++)
if(H[i][j]==BigInt(0))
M[i]++;
}
// determine minimal number of zero components
BigInt min=columns;
// columns is an upper bound (not reached because the kernel basis cannot
// contain the zero vector)
for(int i=0;i<_kernel_dimension;i++)
if(M[i]<min)
min=M[i];
// add the square of the norm to the vectors with the least zero components
// and discard the others (the norm computation is why we have chosen the
// M[i] to be BigInts)
for(int i=0;i<_kernel_dimension;i++)
if(M[i]!=min)
M[i]=-1;
else
for(int j=0;j<columns;j++)
M[i]+=H[i][j]*H[i][j];
// As the lattice basis does not contain the zero vector, at least one M[i]
// is positive!
// determine the start vector, i.e. the one with least zero components, but
// smallest possible (euclidian) norm
int min_index=-1;
for(int i=0;i<_kernel_dimension;i++)
if(M[i]>BigInt(0))
{
if(min_index==-1)
min_index=i;
else if(M[i]<M[min_index])
min_index=i;
}
// Now, H[min_index] is the vector to be transformed into a nonnegative one.
// For a better overview, it is swapped with the first vector
// (only pointers).
if(min_index!=0)
{
BigInt* swap=H[min_index];
H[min_index]=H[0];
H[0]=swap;
}
// Now construct the desired vector.
// This is done by adding a linear combination of
// H[1],...,H[_kernel_dimension-1] to H[0]. It is important that the final
// result, written as a linear combination of
// H[0],...,H[_kernel_dimension-1], has coefficient 1 or -1 at H[0]
// (to make sure that it is together with H[1],...,H[_kernel_dimension]
// still a l a t t i c e basis).
for(int current_position=1;current_position<columns;current_position++)
// in fact, this loop will terminate before the condition in the
// for-statement is satisfied...
{
// STEP 2: Nonnegative vector already found?
BOOLEAN found=TRUE;
for(int j=0;j<columns;j++)
if(H[0][j]==BigInt(0))
found=FALSE;
if(found==TRUE)
// H[0] has only positive entries,
return 1;
// else there are further zero components
// STEP 3: Can a furhter zero component be "eliminated"?
// If this is the case, find a basis vector that can do this.
// determine number of components in each remaining vector that are zero
// in the vector itself as well as in the already constructed vector
for(int i=current_position;i<_kernel_dimension;i++)
M[i]=0;
int remaining_zero_components=0;
for(int j=0;j<columns;j++)
if(H[0][j]==BigInt(0))
{
remaining_zero_components++;
for(int i=current_position;i<_kernel_dimension;i++)
if(H[i][j]==BigInt(0))
M[i]++;
}
// determine minimal number of such components
min=remaining_zero_components;
// this is the number of zero components in H[0] and an upper bound
// for the M[i]
for(int i=current_position;i<_kernel_dimension;i++)
if(M[i]<min)
min=M[i];
if(min==(const BigInt&)remaining_zero_components)
// all zero components in H[0] are zero in each remaining vector
// => desired vector does not exist
return 0;
// add the square of the norm to the vectors with the least common zero
// components
// discard the others
for(int i=current_position;i<_kernel_dimension;i++)
if(M[i]!=min)
M[i]=-1;
else
for(int j=0;j<columns;j++)
M[i]+=H[i][j]*H[i][j];
// Again, at least one M[i] is positive!
// determine vector to proceed with
// This is the vector with the least common zero components with respect
// to H[0], but the smallest possible norm.
int min_index=0;
for(int i=current_position;i<_kernel_dimension;i++)
if(M[i]>BigInt(0))
{
if(min_index==0)
min_index=i;
else if(M[i]<M[min_index])
min_index=i;
}
// Now, a multiple of H[min_index] will be added to the already constructed
// vector H[0].
// For a better handling, it is swapped with the vector at current_position
// (only pointers).
if(min_index!=current_position)
{
BigInt* swap=H[min_index];
H[min_index]=H[current_position];
H[current_position]=swap;
}
// STEP 4: Choose a convenient multiple of H[current_position] to add to H[0].
// The number of factors "mult" that have to be tested is bounded by the
// number of nonzero components in H[0] (for each such components, there is at
// most one such factor that will eliminate it in the linear combination
// H[0] + mult*H[current_position].
found=FALSE;
for(int mult=1;found==FALSE;mult++)
{
found=TRUE;
// check if any component !=0 of H[0] becomes zero by adding
// mult*H[current_position]
for(int j=0;j<columns;j++)
if(H[0][j]!=BigInt(0))
if(H[0][j]+(const BigInt&)mult*H[current_position][j]
==BigInt(0))
found=FALSE;
if(found==TRUE)
for(int j=0;j<columns;j++)
H[0][j]+=(const BigInt&)mult*H[current_position][j];
else
// try -mult
{
found=TRUE;
// check if any component !=0 of H[0] becomes zero by subtracting
// mult*H[current_position]
for(int j=0;j<columns;j++)
if(H[0][j]!=BigInt(0))
if(H[0][j]-(const BigInt&)mult*H[current_position][j]
==BigInt(0))
found=FALSE;
if(found==TRUE)
for(int j=0;j<columns;j++)
H[0][j]-=(const BigInt&)mult*H[current_position][j];
}
}
}
// When reaching this line, an error must have occurred.
cerr<<"FATAL ERROR in int matrix::compute_nonnegative_vector()"<<endl;
abort();
}
int matrix::compute_flip_variables(int*& F)
{
// first compute nonzero vector
int okay=compute_nonzero_kernel_vector();
if(!okay)
{
cout<<"\nWARNING: int matrix::compute_flip_variables(int*&):\n"
"kernel of the matrix contains no vector with nonzero components,\n"
"no flip variables computed"<<endl;
return -1;
}
// compute variables to flip; these might either be those corresponding
// to the positive components of the kernel vector without zero components
// or those corresponding to the negative ones
int r=0;
// number of flip variables
for(int j=0;j<columns;j++)
if(H[0][j]<BigInt(0))
r++;
// remember that all components of H[0] are !=0
if(r==0)
// no flip variables
return 0;
if(2*r>columns)
// more negative than positive components in H[0]
// all variables corresponding to positive components will be flipped
{
r=columns-r;
F=new int[r];
memset(F,0,r*sizeof(int));
int counter=0;
for(int j=0;j<columns;j++)
if(H[0][j]> BigInt(0))
{
F[counter]=j;
counter++;
}
}
else
// more (or as many) positive than negative components in v
// all variables corresponding to negative components will be flipped
{
F=new int[r];
memset(F,0,r*sizeof(int));
int counter=0;
for(int j=0;j<columns;j++)
if(H[0][j]< BigInt(0))
{
F[counter]=j;
counter++;
}
}
return r;
}
int matrix::hosten_shapiro(int*& sat_var)
{
if(_kernel_dimension==-2)
// lattice basis not yet computed
LLL_kernel_basis();
if(_kernel_dimension==-1)
{
cerr<<"\nWARNING: int matrix::hosten_shapiro(int*&):\n"
"error in kernel basis, cannot compute the saturation variables"<<endl;
return 0;
}
if(_kernel_dimension==0)
// the toric ideal corresponding to the kernel lattice is the zero ideal,
// no saturation variables necessary
return 0;
// Now, the kernel dimension is positive.
if(columns==1)
// matrix consists of one zero column, kernel is generated by the vector
// (1) corresponding to the toric ideal <x-1> which is already staurated
return 0;
int number_of_sat_var=0;
sat_var=new int[columns/2];
memset(sat_var,0,sizeof(int)*(columns/2));
BOOLEAN* ideal_saturated_by_var=new BOOLEAN[columns];
// auxiliary array used to remember by which variables the ideal has still to
// be saturated
for(int j=0;j<columns;j++)
ideal_saturated_by_var[j]=FALSE;
for(int k=0;k<_kernel_dimension;k++)
{
// determine number of positive and negative components in H[k]
// corresponding to variables by which the ideal has still to be saturated
int pos_sat_var=0;
int neg_sat_var=0;
for(int j=0;j<columns;j++)
{
if(ideal_saturated_by_var[j]==FALSE)
{
if(H[k][j]> BigInt(0))
pos_sat_var++;
else
if(H[k][j]< BigInt(0))
neg_sat_var++;
}
}
// now add the smaller set to the saturation variables
if(pos_sat_var<=neg_sat_var)
{
for(int j=0;j<columns;j++)
if(ideal_saturated_by_var[j]==FALSE)
{
if(H[k][j]> BigInt(0))
// ideal has to be saturated by the variables corresponding
// to positive components
{
sat_var[number_of_sat_var]=j;
ideal_saturated_by_var[j]=TRUE;
number_of_sat_var++;
}
else if(H[k][j]< BigInt(0))
// then the ideal is automatically saturated by the variables
// corresponding to negative components
ideal_saturated_by_var[j]=TRUE;
}
}
else
{
for(int j=0;j<columns;j++)
if(ideal_saturated_by_var[j]==FALSE)
{
if(H[k][j]< BigInt(0))
// ideal has to be saturated by the variables corresponding
// to negative components
{
sat_var[number_of_sat_var]=j;
ideal_saturated_by_var[j]=TRUE;
number_of_sat_var++;
}
else if(H[k][j]> BigInt(0))
// then the ideal is automatically saturated by the variables
// corresponding to positive components
ideal_saturated_by_var[j]=TRUE;
}
}
}
// clean up memory
delete[] ideal_saturated_by_var;
return number_of_sat_var;
}
//////////////////// output ///////////////////////////////////////////////
void matrix::print() const
{
printf("\n%3d x %3d\n",rows,columns);
for(int i=0;i<rows;i++)
{
for(int j=0;j<columns;j++)
printf("%6d",coefficients[i][j]);
printf("\n");
}
}
void matrix::print(FILE *output) const
{
fprintf(output,"\n%3d x %3d\n",rows,columns);
for(int i=0;i<rows;i++)
{
for(int j=0;j<columns;j++)
fprintf(output,"%6d",coefficients[i][j]);
fprintf(output,"\n");
}
}
void matrix::print(ofstream& output) const
{
output<<endl<<setw(3)<<rows<<" x "<<setw(3)<<columns<<endl;
for(int i=0;i<rows;i++)
{
for(int j=0;j<columns;j++)
output<<setw(6)<<coefficients[i][j];
output<<endl;
}
}
#endif // matrix.cc
|