1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
#ifndef MPR_NUMERIC_H
#define MPR_NUMERIC_H
/****************************************
* Computer Algebra System SINGULAR *
****************************************/
/*
* ABSTRACT - multipolynomial resultants - numeric stuff
* ( root finder, vandermonde system solver, simplex )
*/
//-> include & define stuff
#include <coeffs/numbers.h>
#include <coeffs/mpr_global.h>
#include <coeffs/mpr_complex.h>
// define polish mode when finding roots
#define PM_NONE 0
#define PM_POLISH 1
#define PM_CORRUPT 2
//<-
//-> vandermonde system solver
/**
* vandermonde system solver for interpolating polynomials from their values
*/
class vandermonde
{
public:
vandermonde( const long _cn, const long _n,
const long _maxdeg, number *_p, const bool _homog = true );
~vandermonde();
/** Solves the Vandermode linear system
* \sum_{i=1}^{n} x_i^k-1 w_i = q_k, k=1,..,n.
* Any computations are done using type number to get high pecision results.
* @param q n-tuple of results (right hand of equations)
* @return w n-tuple of coefficients of resulting polynomial, lowest deg first
*/
number * interpolateDense( const number * q );
poly numvec2poly(const number * q );
private:
void init();
private:
long n; // number of variables
long cn; // real number of coefficients of poly to interpolate
long maxdeg; // degree of the polynomial to interpolate
long l; // max number of coefficients in poly of deg maxdeg = (maxdeg+1)^n
number *p; // evaluation point
number *x; // coefficients, determinend by init() from *p
bool homog;
};
//<-
//-> rootContainer
/**
* complex root finder for univariate polynomials based on laguers algorithm
*/
class rootContainer
{
public:
enum rootType { none, cspecial, cspecialmu, det, onepoly };
rootContainer();
~rootContainer();
void fillContainer( number *_coeffs, number *_ievpoint,
const int _var, const int _tdg,
const rootType _rt, const int _anz );
bool solver( const int polishmode= PM_NONE );
poly getPoly();
//gmp_complex & operator[] ( const int i );
inline gmp_complex & operator[] ( const int i )
{
return *theroots[i];
}
gmp_complex & evPointCoord( const int i );
inline gmp_complex * getRoot( const int i )
{
return theroots[i];
}
bool swapRoots( const int from, const int to );
int getAnzElems() { return anz; }
int getLDim() { return anz; }
int getAnzRoots() { return tdg; }
private:
rootContainer( const rootContainer & v );
/** Given the degree tdg and the tdg+1 complex coefficients ad[0..tdg]
* (generated from the number coefficients coeffs[0..tdg]) of the polynomial
* this routine successively calls "laguer" and finds all m complex roots in
* roots[0..tdg]. The bool var "polish" should be input as "true" if polishing
* (also by "laguer") is desired, "false" if the roots will be subsequently
* polished by other means.
*/
bool laguer_driver( gmp_complex ** a, gmp_complex ** roots, bool polish = true );
bool isfloat(gmp_complex **a);
void divlin(gmp_complex **a, gmp_complex x, int j);
void divquad(gmp_complex **a, gmp_complex x, int j);
void solvequad(gmp_complex **a, gmp_complex **r, int &k, int &j);
void sortroots(gmp_complex **roots, int r, int c, bool isf);
void sortre(gmp_complex **r, int l, int u, int inc);
/** Given the degree m and the m+1 complex coefficients a[0..m] of the
* polynomial, and given the complex value x, this routine improves x by
* Laguerre's method until it converges, within the achievable roundoff limit,
* to a root of the given polynomial. The number of iterations taken is
* returned at its.
*/
void laguer(gmp_complex ** a, int m, gmp_complex * x, int * its, bool type);
void computefx(gmp_complex **a, gmp_complex x, int m,
gmp_complex &f0, gmp_complex &f1, gmp_complex &f2,
gmp_float &ex, gmp_float &ef);
void computegx(gmp_complex **a, gmp_complex x, int m,
gmp_complex &f0, gmp_complex &f1, gmp_complex &f2,
gmp_float &ex, gmp_float &ef);
void checkimag(gmp_complex *x, gmp_float &e);
int var;
int tdg;
number * coeffs;
number * ievpoint;
rootType rt;
gmp_complex ** theroots;
int anz;
bool found_roots;
};
//<-
class slists; typedef slists * lists;
//-> class rootArranger
class rootArranger
{
public:
friend lists listOfRoots( rootArranger*, const unsigned int oprec );
rootArranger( rootContainer ** _roots,
rootContainer ** _mu,
const int _howclean = PM_CORRUPT );
~rootArranger() {}
void solve_all();
void arrange();
bool success() { return found_roots; }
private:
rootArranger( const rootArranger & );
rootContainer ** roots;
rootContainer ** mu;
int howclean;
int rc,mc;
bool found_roots;
};
//<-
//-> simplex computation
// (used by sparse matrix construction)
#define SIMPLEX_EPS 1.0e-12
/** Linear Programming / Linear Optimization using Simplex - Algorithm
*
* On output, the tableau LiPM is indexed by two arrays of integers.
* ipsov[j] contains, for j=1..m, the number i whose original variable
* is now represented by row j+1 of LiPM. (left-handed vars in solution)
* (first row is the one with the objective function)
* izrov[j] contains, for j=1..n, the number i whose original variable
* x_i is now a right-handed variable, rep. by column j+1 of LiPM.
* These vars are all zero in the solution. The meaning of n<i<n+m1+m2
* is the same as above.
*/
class simplex
{
public:
int m; // number of constraints, make sure m == m1 + m2 + m3 !!
int n; // # of independent variables
int m1,m2,m3; // constraints <=, >= and ==
int icase; // == 0: finite solution found;
// == +1 objective funtion unbound; == -1: no solution
int *izrov,*iposv;
mprfloat **LiPM; // the matrix (of size [m+2, n+1])
/** #rows should be >= m+2, #cols >= n+1
*/
simplex( int rows, int cols );
~simplex();
BOOLEAN mapFromMatrix( matrix m );
matrix mapToMatrix( matrix m );
intvec * posvToIV();
intvec * zrovToIV();
void compute();
private:
simplex( const simplex & );
void simp1( mprfloat **a, int mm, int ll[], int nll, int iabf, int *kp, mprfloat *bmax );
void simp2( mprfloat **a, int n, int l2[], int nl2, int *ip, int kp, mprfloat *q1 );
void simp3( mprfloat **a, int i1, int k1, int ip, int kp );
int LiPM_cols,LiPM_rows;
};
//<-
#endif /*MPR_NUMERIC_H*/
// local Variables: ***
// folded-file: t ***
// compile-command-1: "make installg" ***
// compile-command-2: "make install" ***
// End: ***
|