File: cf_gcd.cc

package info (click to toggle)
singular 1%3A4.1.1-p2%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 35,860 kB
  • sloc: cpp: 288,280; ansic: 17,387; lisp: 4,242; yacc: 1,654; python: 1,608; makefile: 1,424; lex: 1,387; perl: 632; sh: 567; xml: 182
file content (350 lines) | stat: -rw-r--r-- 8,591 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/* emacs edit mode for this file is -*- C++ -*- */

/**
 * @file cf_gcd.cc
 *
 * gcd/content/lcm of polynomials
 *
 * To compute the GCD different variants are chosen automatically
**/

#include "config.h"


#include "timing.h"
#include "cf_assert.h"
#include "debug.h"

#include "cf_defs.h"
#include "canonicalform.h"
#include "cf_iter.h"
#include "cf_reval.h"
#include "cf_primes.h"
#include "cf_algorithm.h"
#include "cfEzgcd.h"
#include "cfGcdAlgExt.h"
#include "cfSubResGcd.h"
#include "cfModGcd.h"

#ifdef HAVE_NTL
#include <NTL/ZZX.h>
#include "NTLconvert.h"
bool isPurePoly(const CanonicalForm & );
#endif

void out_cf(const char *s1,const CanonicalForm &f,const char *s2);

/** static CanonicalForm icontent ( const CanonicalForm & f, const CanonicalForm & c )
 *
 * icontent() - return gcd of c and all coefficients of f which
 *   are in a coefficient domain.
 *
 * @sa icontent().
 *
**/
static CanonicalForm
icontent ( const CanonicalForm & f, const CanonicalForm & c )
{
    if ( f.inBaseDomain() )
    {
      if (c.isZero()) return abs(f);
      return bgcd( f, c );
    }
    //else if ( f.inCoeffDomain() )
    //   return gcd(f,c);
    else
    {
        CanonicalForm g = c;
        for ( CFIterator i = f; i.hasTerms() && ! g.isOne(); i++ )
            g = icontent( i.coeff(), g );
        return g;
    }
}

/** CanonicalForm icontent ( const CanonicalForm & f )
 *
 * icontent() - return gcd over all coefficients of f which are
 *   in a coefficient domain.
 *
**/
CanonicalForm
icontent ( const CanonicalForm & f )
{
    return icontent( f, 0 );
}

/** CanonicalForm gcd_poly ( const CanonicalForm & f, const CanonicalForm & g )
 *
 * gcd_poly() - calculate polynomial gcd.
 *
 * This is the dispatcher for polynomial gcd calculation.
 * Different gcd variants get called depending the input, characteristic, and
 * on switches (cf_defs.h)
 *
 * With the current settings from Singular (i.e. SW_USE_EZGCD= on,
 * SW_USE_EZGCD_P= on, SW_USE_CHINREM_GCD= on, the EZ GCD variants are the
 * default algorithms for multivariate polynomial GCD computations)
 *
 * @sa gcd(), cf_defs.h
 *
**/
#if 0
int si_factor_reminder=1;
#endif
CanonicalForm gcd_poly ( const CanonicalForm & f, const CanonicalForm & g )
{
  CanonicalForm fc, gc, d1;
  bool fc_isUnivariate=f.isUnivariate();
  bool gc_isUnivariate=g.isUnivariate();
  bool fc_and_gc_Univariate=fc_isUnivariate && gc_isUnivariate;
  fc = f;
  gc = g;
  if ( getCharacteristic() != 0 )
  {
    #ifdef HAVE_NTL
    if ((!fc_and_gc_Univariate) && (isOn( SW_USE_EZGCD_P )))
    {
      fc= EZGCD_P (fc, gc);
    }
    else if (isOn(SW_USE_FF_MOD_GCD) && !fc_and_gc_Univariate)
    {
      Variable a;
      if (hasFirstAlgVar (fc, a) || hasFirstAlgVar (gc, a))
        fc=modGCDFq (fc, gc, a);
      else if (CFFactory::gettype() == GaloisFieldDomain)
        fc=modGCDGF (fc, gc);
      else
        fc=modGCDFp (fc, gc);
    }
    else
    #endif
    fc = subResGCD_p( fc, gc );
  }
  else if (!fc_and_gc_Univariate)
  {
    if ( isOn( SW_USE_EZGCD ) )
      fc= ezgcd (fc, gc);
#ifdef HAVE_NTL
    else if (isOn(SW_USE_CHINREM_GCD))
      fc = modGCDZ( fc, gc);
#endif
    else
    {
       fc = subResGCD_0( fc, gc );
    }
  }
  else
  {
    fc = subResGCD_0( fc, gc );
  }
  if ( d1.degree() > 0 )
    fc *= d1;
  return fc;
}

/** static CanonicalForm cf_content ( const CanonicalForm & f, const CanonicalForm & g )
 *
 * cf_content() - return gcd(g, content(f)).
 *
 * content(f) is calculated with respect to f's main variable.
 *
 * @sa gcd(), content(), content( CF, Variable ).
 *
**/
static CanonicalForm
cf_content ( const CanonicalForm & f, const CanonicalForm & g )
{
    if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) )
    {
        CFIterator i = f;
        CanonicalForm result = g;
        while ( i.hasTerms() && ! result.isOne() )
        {
            result = gcd( i.coeff(), result );
            i++;
        }
        return result;
    }
    else
        return abs( f );
}

/** CanonicalForm content ( const CanonicalForm & f )
 *
 * content() - return content(f) with respect to main variable.
 *
 * Normalizes result.
 *
**/
CanonicalForm
content ( const CanonicalForm & f )
{
    if ( f.inPolyDomain() || ( f.inExtension() && ! getReduce( f.mvar() ) ) )
    {
        CFIterator i = f;
        CanonicalForm result = abs( i.coeff() );
        i++;
        while ( i.hasTerms() && ! result.isOne() )
        {
            result = gcd( i.coeff(), result );
            i++;
        }
        return result;
    }
    else
        return abs( f );
}

/** CanonicalForm content ( const CanonicalForm & f, const Variable & x )
 *
 * content() - return content(f) with respect to x.
 *
 * x should be a polynomial variable.
 *
**/
CanonicalForm
content ( const CanonicalForm & f, const Variable & x )
{
    if (f.inBaseDomain()) return f;
    ASSERT( x.level() > 0, "cannot calculate content with respect to algebraic variable" );
    Variable y = f.mvar();

    if ( y == x )
        return cf_content( f, 0 );
    else  if ( y < x )
        return f;
    else
        return swapvar( content( swapvar( f, y, x ), y ), y, x );
}

/** CanonicalForm vcontent ( const CanonicalForm & f, const Variable & x )
 *
 * vcontent() - return content of f with repect to variables >= x.
 *
 * The content is recursively calculated over all coefficients in
 * f having level less than x.  x should be a polynomial
 * variable.
 *
**/
CanonicalForm
vcontent ( const CanonicalForm & f, const Variable & x )
{
    ASSERT( x.level() > 0, "cannot calculate vcontent with respect to algebraic variable" );

    if ( f.mvar() <= x )
        return content( f, x );
    else {
        CFIterator i;
        CanonicalForm d = 0;
        for ( i = f; i.hasTerms() && ! d.isOne(); i++ )
            d = gcd( d, vcontent( i.coeff(), x ) );
        return d;
    }
}

/** CanonicalForm pp ( const CanonicalForm & f )
 *
 * pp() - return primitive part of f.
 *
 * Returns zero if f equals zero, otherwise f / content(f).
 *
**/
CanonicalForm
pp ( const CanonicalForm & f )
{
    if ( f.isZero() )
        return f;
    else
        return f / content( f );
}

CanonicalForm
gcd ( const CanonicalForm & f, const CanonicalForm & g )
{
    bool b = f.isZero();
    if ( b || g.isZero() )
    {
        if ( b )
            return abs( g );
        else
            return abs( f );
    }
    if ( f.inPolyDomain() || g.inPolyDomain() )
    {
        if ( f.mvar() != g.mvar() )
        {
            if ( f.mvar() > g.mvar() )
                return cf_content( f, g );
            else
                return cf_content( g, f );
        }
        if (isOn(SW_USE_QGCD))
        {
          Variable m;
          if (
          (getCharacteristic() == 0) &&
          (hasFirstAlgVar(f,m) || hasFirstAlgVar(g,m))
          )
          {
            bool on_rational = isOn(SW_RATIONAL);
            CanonicalForm r=QGCD(f,g);
            On(SW_RATIONAL);
            CanonicalForm cdF = bCommonDen( r );
            if (!on_rational) Off(SW_RATIONAL);
            return cdF*r;
          }
        }

        if ( f.inExtension() && getReduce( f.mvar() ) )
            return CanonicalForm(1);
        else
        {
            if ( fdivides( f, g ) )
                return abs( f );
            else  if ( fdivides( g, f ) )
                return abs( g );
            if ( !( getCharacteristic() == 0 && isOn( SW_RATIONAL ) ) )
            {
                CanonicalForm d;
                d = gcd_poly( f, g );
                return abs( d );
            }
            else
            {
                CanonicalForm cdF = bCommonDen( f );
                CanonicalForm cdG = bCommonDen( g );
                Off( SW_RATIONAL );
                CanonicalForm l = lcm( cdF, cdG );
                On( SW_RATIONAL );
                CanonicalForm F = f * l, G = g * l;
                Off( SW_RATIONAL );
                l = gcd_poly( F, G );
                On( SW_RATIONAL );
                return abs( l );
            }
        }
    }
    if ( f.inBaseDomain() && g.inBaseDomain() )
        return bgcd( f, g );
    else
        return 1;
}

/** CanonicalForm lcm ( const CanonicalForm & f, const CanonicalForm & g )
 *
 * lcm() - return least common multiple of f and g.
 *
 * The lcm is calculated using the formula lcm(f, g) = f * g / gcd(f, g).
 *
 * Returns zero if one of f or g equals zero.
 *
**/
CanonicalForm
lcm ( const CanonicalForm & f, const CanonicalForm & g )
{
    if ( f.isZero() || g.isZero() )
        return 0;
    else
        return ( f / gcd( f, g ) ) * g;
}