1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
package libtrust
import (
"bytes"
"crypto"
"crypto/elliptic"
"crypto/tls"
"crypto/x509"
"encoding/base32"
"encoding/base64"
"encoding/binary"
"encoding/pem"
"errors"
"fmt"
"math/big"
"net/url"
"os"
"path/filepath"
"strings"
"time"
)
// LoadOrCreateTrustKey will load a PrivateKey from the specified path
func LoadOrCreateTrustKey(trustKeyPath string) (PrivateKey, error) {
if err := os.MkdirAll(filepath.Dir(trustKeyPath), 0700); err != nil {
return nil, err
}
trustKey, err := LoadKeyFile(trustKeyPath)
if err == ErrKeyFileDoesNotExist {
trustKey, err = GenerateECP256PrivateKey()
if err != nil {
return nil, fmt.Errorf("error generating key: %s", err)
}
if err := SaveKey(trustKeyPath, trustKey); err != nil {
return nil, fmt.Errorf("error saving key file: %s", err)
}
dir, file := filepath.Split(trustKeyPath)
if err := SavePublicKey(filepath.Join(dir, "public-"+file), trustKey.PublicKey()); err != nil {
return nil, fmt.Errorf("error saving public key file: %s", err)
}
} else if err != nil {
return nil, fmt.Errorf("error loading key file: %s", err)
}
return trustKey, nil
}
// NewIdentityAuthTLSClientConfig returns a tls.Config configured to use identity
// based authentication from the specified dockerUrl, the rootConfigPath and
// the server name to which it is connecting.
// If trustUnknownHosts is true it will automatically add the host to the
// known-hosts.json in rootConfigPath.
func NewIdentityAuthTLSClientConfig(dockerUrl string, trustUnknownHosts bool, rootConfigPath string, serverName string) (*tls.Config, error) {
tlsConfig := newTLSConfig()
trustKeyPath := filepath.Join(rootConfigPath, "key.json")
knownHostsPath := filepath.Join(rootConfigPath, "known-hosts.json")
u, err := url.Parse(dockerUrl)
if err != nil {
return nil, fmt.Errorf("unable to parse machine url")
}
if u.Scheme == "unix" {
return nil, nil
}
addr := u.Host
proto := "tcp"
trustKey, err := LoadOrCreateTrustKey(trustKeyPath)
if err != nil {
return nil, fmt.Errorf("unable to load trust key: %s", err)
}
knownHosts, err := LoadKeySetFile(knownHostsPath)
if err != nil {
return nil, fmt.Errorf("could not load trusted hosts file: %s", err)
}
allowedHosts, err := FilterByHosts(knownHosts, addr, false)
if err != nil {
return nil, fmt.Errorf("error filtering hosts: %s", err)
}
certPool, err := GenerateCACertPool(trustKey, allowedHosts)
if err != nil {
return nil, fmt.Errorf("Could not create CA pool: %s", err)
}
tlsConfig.ServerName = serverName
tlsConfig.RootCAs = certPool
x509Cert, err := GenerateSelfSignedClientCert(trustKey)
if err != nil {
return nil, fmt.Errorf("certificate generation error: %s", err)
}
tlsConfig.Certificates = []tls.Certificate{{
Certificate: [][]byte{x509Cert.Raw},
PrivateKey: trustKey.CryptoPrivateKey(),
Leaf: x509Cert,
}}
tlsConfig.InsecureSkipVerify = true
testConn, err := tls.Dial(proto, addr, tlsConfig)
if err != nil {
return nil, fmt.Errorf("tls Handshake error: %s", err)
}
opts := x509.VerifyOptions{
Roots: tlsConfig.RootCAs,
CurrentTime: time.Now(),
DNSName: tlsConfig.ServerName,
Intermediates: x509.NewCertPool(),
}
certs := testConn.ConnectionState().PeerCertificates
for i, cert := range certs {
if i == 0 {
continue
}
opts.Intermediates.AddCert(cert)
}
if _, err := certs[0].Verify(opts); err != nil {
if _, ok := err.(x509.UnknownAuthorityError); ok {
if trustUnknownHosts {
pubKey, err := FromCryptoPublicKey(certs[0].PublicKey)
if err != nil {
return nil, fmt.Errorf("error extracting public key from cert: %s", err)
}
pubKey.AddExtendedField("hosts", []string{addr})
if err := AddKeySetFile(knownHostsPath, pubKey); err != nil {
return nil, fmt.Errorf("error adding machine to known hosts: %s", err)
}
} else {
return nil, fmt.Errorf("unable to connect. unknown host: %s", addr)
}
}
}
testConn.Close()
tlsConfig.InsecureSkipVerify = false
return tlsConfig, nil
}
// joseBase64UrlEncode encodes the given data using the standard base64 url
// encoding format but with all trailing '=' characters omitted in accordance
// with the jose specification.
// http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-31#section-2
func joseBase64UrlEncode(b []byte) string {
return strings.TrimRight(base64.URLEncoding.EncodeToString(b), "=")
}
// joseBase64UrlDecode decodes the given string using the standard base64 url
// decoder but first adds the appropriate number of trailing '=' characters in
// accordance with the jose specification.
// http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-31#section-2
func joseBase64UrlDecode(s string) ([]byte, error) {
s = strings.Replace(s, "\n", "", -1)
s = strings.Replace(s, " ", "", -1)
switch len(s) % 4 {
case 0:
case 2:
s += "=="
case 3:
s += "="
default:
return nil, errors.New("illegal base64url string")
}
return base64.URLEncoding.DecodeString(s)
}
func keyIDEncode(b []byte) string {
s := strings.TrimRight(base32.StdEncoding.EncodeToString(b), "=")
var buf bytes.Buffer
var i int
for i = 0; i < len(s)/4-1; i++ {
start := i * 4
end := start + 4
buf.WriteString(s[start:end] + ":")
}
buf.WriteString(s[i*4:])
return buf.String()
}
func keyIDFromCryptoKey(pubKey PublicKey) string {
// Generate and return a 'libtrust' fingerprint of the public key.
// For an RSA key this should be:
// SHA256(DER encoded ASN1)
// Then truncated to 240 bits and encoded into 12 base32 groups like so:
// ABCD:EFGH:IJKL:MNOP:QRST:UVWX:YZ23:4567:ABCD:EFGH:IJKL:MNOP
derBytes, err := x509.MarshalPKIXPublicKey(pubKey.CryptoPublicKey())
if err != nil {
return ""
}
hasher := crypto.SHA256.New()
hasher.Write(derBytes)
return keyIDEncode(hasher.Sum(nil)[:30])
}
func stringFromMap(m map[string]interface{}, key string) (string, error) {
val, ok := m[key]
if !ok {
return "", fmt.Errorf("%q value not specified", key)
}
str, ok := val.(string)
if !ok {
return "", fmt.Errorf("%q value must be a string", key)
}
delete(m, key)
return str, nil
}
func parseECCoordinate(cB64Url string, curve elliptic.Curve) (*big.Int, error) {
curveByteLen := (curve.Params().BitSize + 7) >> 3
cBytes, err := joseBase64UrlDecode(cB64Url)
if err != nil {
return nil, fmt.Errorf("invalid base64 URL encoding: %s", err)
}
cByteLength := len(cBytes)
if cByteLength != curveByteLen {
return nil, fmt.Errorf("invalid number of octets: got %d, should be %d", cByteLength, curveByteLen)
}
return new(big.Int).SetBytes(cBytes), nil
}
func parseECPrivateParam(dB64Url string, curve elliptic.Curve) (*big.Int, error) {
dBytes, err := joseBase64UrlDecode(dB64Url)
if err != nil {
return nil, fmt.Errorf("invalid base64 URL encoding: %s", err)
}
// The length of this octet string MUST be ceiling(log-base-2(n)/8)
// octets (where n is the order of the curve). This is because the private
// key d must be in the interval [1, n-1] so the bitlength of d should be
// no larger than the bitlength of n-1. The easiest way to find the octet
// length is to take bitlength(n-1), add 7 to force a carry, and shift this
// bit sequence right by 3, which is essentially dividing by 8 and adding
// 1 if there is any remainder. Thus, the private key value d should be
// output to (bitlength(n-1)+7)>>3 octets.
n := curve.Params().N
octetLength := (new(big.Int).Sub(n, big.NewInt(1)).BitLen() + 7) >> 3
dByteLength := len(dBytes)
if dByteLength != octetLength {
return nil, fmt.Errorf("invalid number of octets: got %d, should be %d", dByteLength, octetLength)
}
return new(big.Int).SetBytes(dBytes), nil
}
func parseRSAModulusParam(nB64Url string) (*big.Int, error) {
nBytes, err := joseBase64UrlDecode(nB64Url)
if err != nil {
return nil, fmt.Errorf("invalid base64 URL encoding: %s", err)
}
return new(big.Int).SetBytes(nBytes), nil
}
func serializeRSAPublicExponentParam(e int) []byte {
// We MUST use the minimum number of octets to represent E.
// E is supposed to be 65537 for performance and security reasons
// and is what golang's rsa package generates, but it might be
// different if imported from some other generator.
buf := make([]byte, 4)
binary.BigEndian.PutUint32(buf, uint32(e))
var i int
for i = 0; i < 8; i++ {
if buf[i] != 0 {
break
}
}
return buf[i:]
}
func parseRSAPublicExponentParam(eB64Url string) (int, error) {
eBytes, err := joseBase64UrlDecode(eB64Url)
if err != nil {
return 0, fmt.Errorf("invalid base64 URL encoding: %s", err)
}
// Only the minimum number of bytes were used to represent E, but
// binary.BigEndian.Uint32 expects at least 4 bytes, so we need
// to add zero padding if necassary.
byteLen := len(eBytes)
buf := make([]byte, 4-byteLen, 4)
eBytes = append(buf, eBytes...)
return int(binary.BigEndian.Uint32(eBytes)), nil
}
func parseRSAPrivateKeyParamFromMap(m map[string]interface{}, key string) (*big.Int, error) {
b64Url, err := stringFromMap(m, key)
if err != nil {
return nil, err
}
paramBytes, err := joseBase64UrlDecode(b64Url)
if err != nil {
return nil, fmt.Errorf("invaled base64 URL encoding: %s", err)
}
return new(big.Int).SetBytes(paramBytes), nil
}
func createPemBlock(name string, derBytes []byte, headers map[string]interface{}) (*pem.Block, error) {
pemBlock := &pem.Block{Type: name, Bytes: derBytes, Headers: map[string]string{}}
for k, v := range headers {
switch val := v.(type) {
case string:
pemBlock.Headers[k] = val
case []string:
if k == "hosts" {
pemBlock.Headers[k] = strings.Join(val, ",")
} else {
// Return error, non-encodable type
}
default:
// Return error, non-encodable type
}
}
return pemBlock, nil
}
func pubKeyFromPEMBlock(pemBlock *pem.Block) (PublicKey, error) {
cryptoPublicKey, err := x509.ParsePKIXPublicKey(pemBlock.Bytes)
if err != nil {
return nil, fmt.Errorf("unable to decode Public Key PEM data: %s", err)
}
pubKey, err := FromCryptoPublicKey(cryptoPublicKey)
if err != nil {
return nil, err
}
addPEMHeadersToKey(pemBlock, pubKey)
return pubKey, nil
}
func addPEMHeadersToKey(pemBlock *pem.Block, pubKey PublicKey) {
for key, value := range pemBlock.Headers {
var safeVal interface{}
if key == "hosts" {
safeVal = strings.Split(value, ",")
} else {
safeVal = value
}
pubKey.AddExtendedField(key, safeVal)
}
}
|