1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
package goodkey
import (
"context"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"errors"
"fmt"
"math/big"
"sync"
"github.com/letsencrypt/boulder/core"
"github.com/titanous/rocacheck"
)
// To generate, run: primes 2 752 | tr '\n' ,
var smallPrimeInts = []int64{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709,
719, 727, 733, 739, 743, 751,
}
// singleton defines the object of a Singleton pattern
var (
smallPrimesSingleton sync.Once
smallPrimesProduct *big.Int
)
type Config struct {
// WeakKeyFile is the path to a JSON file containing truncated modulus hashes
// of known weak RSA keys. If this config value is empty, then RSA modulus
// hash checking will be disabled.
WeakKeyFile string
// BlockedKeyFile is the path to a YAML file containing base64-encoded SHA256
// hashes of PKIX Subject Public Keys that should be blocked. If this config
// value is empty, then blocked key checking will be disabled.
BlockedKeyFile string
// FermatRounds is an integer number of rounds of Fermat's factorization
// method that should be performed to attempt to detect keys whose modulus can
// be trivially factored because the two factors are very close to each other.
// If this config value is empty (0), no factorization will be attempted.
FermatRounds int
}
// ErrBadKey represents an error with a key. It is distinct from the various
// ways in which an ACME request can have an erroneous key (BadPublicKeyError,
// BadCSRError) because this library is used to check both JWS signing keys and
// keys in CSRs.
var ErrBadKey = errors.New("")
func badKey(msg string, args ...interface{}) error {
return fmt.Errorf("%w%s", ErrBadKey, fmt.Errorf(msg, args...))
}
// BlockedKeyCheckFunc is used to pass in the sa.BlockedKey functionality to KeyPolicy,
// rather than storing a full sa.SQLStorageAuthority. This allows external
// users who don’t want to import all of boulder/sa, and makes testing
// significantly simpler.
// On success, the function returns a boolean which is true if the key is blocked.
type BlockedKeyCheckFunc func(ctx context.Context, keyHash []byte) (bool, error)
// KeyPolicy determines which types of key may be used with various boulder
// operations.
type KeyPolicy struct {
AllowRSA bool // Whether RSA keys should be allowed.
AllowECDSANISTP256 bool // Whether ECDSA NISTP256 keys should be allowed.
AllowECDSANISTP384 bool // Whether ECDSA NISTP384 keys should be allowed.
weakRSAList *WeakRSAKeys
blockedList *blockedKeys
fermatRounds int
blockedCheck BlockedKeyCheckFunc
}
// NewKeyPolicy returns a KeyPolicy that allows RSA, ECDSA256 and ECDSA384.
// weakKeyFile contains the path to a JSON file containing truncated modulus
// hashes of known weak RSA keys. If this argument is empty RSA modulus hash
// checking will be disabled. blockedKeyFile contains the path to a YAML file
// containing Base64 encoded SHA256 hashes of pkix subject public keys that
// should be blocked. If this argument is empty then no blocked key checking is
// performed.
func NewKeyPolicy(config *Config, bkc BlockedKeyCheckFunc) (KeyPolicy, error) {
kp := KeyPolicy{
AllowRSA: true,
AllowECDSANISTP256: true,
AllowECDSANISTP384: true,
blockedCheck: bkc,
}
if config.WeakKeyFile != "" {
keyList, err := LoadWeakRSASuffixes(config.WeakKeyFile)
if err != nil {
return KeyPolicy{}, err
}
kp.weakRSAList = keyList
}
if config.BlockedKeyFile != "" {
blocked, err := loadBlockedKeysList(config.BlockedKeyFile)
if err != nil {
return KeyPolicy{}, err
}
kp.blockedList = blocked
}
if config.FermatRounds < 0 {
return KeyPolicy{}, fmt.Errorf("Fermat factorization rounds cannot be negative: %d", config.FermatRounds)
}
kp.fermatRounds = config.FermatRounds
return kp, nil
}
// GoodKey returns true if the key is acceptable for both TLS use and account
// key use (our requirements are the same for either one), according to basic
// strength and algorithm checking. GoodKey only supports pointers: *rsa.PublicKey
// and *ecdsa.PublicKey. It will reject non-pointer types.
// TODO: Support JSONWebKeys once go-jose migration is done.
func (policy *KeyPolicy) GoodKey(ctx context.Context, key crypto.PublicKey) error {
// Early rejection of unacceptable key types to guard subsequent checks.
switch t := key.(type) {
case *rsa.PublicKey, *ecdsa.PublicKey:
break
default:
return badKey("unsupported key type %T", t)
}
// If there is a blocked list configured then check if the public key is one
// that has been administratively blocked.
if policy.blockedList != nil {
if blocked, err := policy.blockedList.blocked(key); err != nil {
return fmt.Errorf("error checking blocklist for key: %v", key)
} else if blocked {
return badKey("public key is forbidden")
}
}
if policy.blockedCheck != nil {
digest, err := core.KeyDigest(key)
if err != nil {
return badKey("%w", err)
}
exists, err := policy.blockedCheck(ctx, digest[:])
if err != nil {
return err
} else if exists {
return badKey("public key is forbidden")
}
}
switch t := key.(type) {
case *rsa.PublicKey:
return policy.goodKeyRSA(t)
case *ecdsa.PublicKey:
return policy.goodKeyECDSA(t)
default:
return badKey("unsupported key type %T", key)
}
}
// GoodKeyECDSA determines if an ECDSA pubkey meets our requirements
func (policy *KeyPolicy) goodKeyECDSA(key *ecdsa.PublicKey) (err error) {
// Check the curve.
//
// The validity of the curve is an assumption for all following tests.
err = policy.goodCurve(key.Curve)
if err != nil {
return err
}
// Key validation routine adapted from NIST SP800-56A § 5.6.2.3.2.
// <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf>
//
// Assuming a prime field since a) we are only allowing such curves and b)
// crypto/elliptic only supports prime curves. Where this assumption
// simplifies the code below, it is explicitly stated and explained. If ever
// adapting this code to support non-prime curves, refer to NIST SP800-56A §
// 5.6.2.3.2 and adapt this code appropriately.
params := key.Params()
// SP800-56A § 5.6.2.3.2 Step 1.
// Partial check of the public key for an invalid range in the EC group:
// Verify that key is not the point at infinity O.
// This code assumes that the point at infinity is (0,0), which is the
// case for all supported curves.
if isPointAtInfinityNISTP(key.X, key.Y) {
return badKey("key x, y must not be the point at infinity")
}
// SP800-56A § 5.6.2.3.2 Step 2.
// "Verify that x_Q and y_Q are integers in the interval [0,p-1] in the
// case that q is an odd prime p, or that x_Q and y_Q are bit strings
// of length m bits in the case that q = 2**m."
//
// Prove prime field: ASSUMED.
// Prove q != 2: ASSUMED. (Curve parameter. No supported curve has q == 2.)
// Prime field && q != 2 => q is an odd prime p
// Therefore "verify that x, y are in [0, p-1]" satisfies step 2.
//
// Therefore verify that both x and y of the public key point have the unique
// correct representation of an element in the underlying field by verifying
// that x and y are integers in [0, p-1].
if key.X.Sign() < 0 || key.Y.Sign() < 0 {
return badKey("key x, y must not be negative")
}
if key.X.Cmp(params.P) >= 0 || key.Y.Cmp(params.P) >= 0 {
return badKey("key x, y must not exceed P-1")
}
// SP800-56A § 5.6.2.3.2 Step 3.
// "If q is an odd prime p, verify that (y_Q)**2 === (x_Q)***3 + a*x_Q + b (mod p).
// If q = 2**m, verify that (y_Q)**2 + (x_Q)*(y_Q) == (x_Q)**3 + a*(x_Q)*2 + b in
// the finite field of size 2**m.
// (Ensures that the public key is on the correct elliptic curve.)"
//
// q is an odd prime p: proven/assumed above.
// a = -3 for all supported curves.
//
// Therefore step 3 is satisfied simply by showing that
// y**2 === x**3 - 3*x + B (mod P).
//
// This proves that the public key is on the correct elliptic curve.
// But in practice, this test is provided by crypto/elliptic, so use that.
if !key.Curve.IsOnCurve(key.X, key.Y) {
return badKey("key point is not on the curve")
}
// SP800-56A § 5.6.2.3.2 Step 4.
// "Verify that n*Q == Ø.
// (Ensures that the public key has the correct order. Along with check 1,
// ensures that the public key is in the correct range in the correct EC
// subgroup, that is, it is in the correct EC subgroup and is not the
// identity element.)"
//
// Ensure that public key has the correct order:
// verify that n*Q = Ø.
//
// n*Q = Ø iff n*Q is the point at infinity (see step 1).
ox, oy := key.Curve.ScalarMult(key.X, key.Y, params.N.Bytes())
if !isPointAtInfinityNISTP(ox, oy) {
return badKey("public key does not have correct order")
}
// End of SP800-56A § 5.6.2.3.2 Public Key Validation Routine.
// Key is valid.
return nil
}
// Returns true iff the point (x,y) on NIST P-256, NIST P-384 or NIST P-521 is
// the point at infinity. These curves all have the same point at infinity
// (0,0). This function must ONLY be used on points on curves verified to have
// (0,0) as their point at infinity.
func isPointAtInfinityNISTP(x, y *big.Int) bool {
return x.Sign() == 0 && y.Sign() == 0
}
// GoodCurve determines if an elliptic curve meets our requirements.
func (policy *KeyPolicy) goodCurve(c elliptic.Curve) (err error) {
// Simply use a whitelist for now.
params := c.Params()
switch {
case policy.AllowECDSANISTP256 && params == elliptic.P256().Params():
return nil
case policy.AllowECDSANISTP384 && params == elliptic.P384().Params():
return nil
default:
return badKey("ECDSA curve %v not allowed", params.Name)
}
}
// Baseline Requirements, Section 6.1.5 requires key size >= 2048 and a multiple
// of 8 bits: https://github.com/cabforum/servercert/blob/main/docs/BR.md#615-key-sizes
// Baseline Requirements, Section 6.1.1.3 requires that we reject any keys which
// have a known method to easily compute their private key, such as Debian Weak
// Keys. Our enforcement mechanism relies on enumerating all Debian Weak Keys at
// common key sizes, so we restrict all issuance to those common key sizes.
var acceptableRSAKeySizes = map[int]bool{
2048: true,
3072: true,
4096: true,
}
// GoodKeyRSA determines if a RSA pubkey meets our requirements
func (policy *KeyPolicy) goodKeyRSA(key *rsa.PublicKey) (err error) {
if !policy.AllowRSA {
return badKey("RSA keys are not allowed")
}
if policy.weakRSAList != nil && policy.weakRSAList.Known(key) {
return badKey("key is on a known weak RSA key list")
}
modulus := key.N
// See comment on acceptableRSAKeySizes above.
modulusBitLen := modulus.BitLen()
if !acceptableRSAKeySizes[modulusBitLen] {
return badKey("key size not supported: %d", modulusBitLen)
}
// Rather than support arbitrary exponents, which significantly increases
// the size of the key space we allow, we restrict E to the defacto standard
// RSA exponent 65537. There is no specific standards document that specifies
// 65537 as the 'best' exponent, but ITU X.509 Annex C suggests there are
// notable merits for using it if using a fixed exponent.
//
// The CABF Baseline Requirements state:
// The CA SHALL confirm that the value of the public exponent is an
// odd number equal to 3 or more. Additionally, the public exponent
// SHOULD be in the range between 2^16 + 1 and 2^256-1.
//
// By only allowing one exponent, which fits these constraints, we satisfy
// these requirements.
if key.E != 65537 {
return badKey("key exponent must be 65537")
}
// The modulus SHOULD also have the following characteristics: an odd
// number, not the power of a prime, and have no factors smaller than 752.
// TODO: We don't yet check for "power of a prime."
if checkSmallPrimes(modulus) {
return badKey("key divisible by small prime")
}
// Check for weak keys generated by Infineon hardware
// (see https://crocs.fi.muni.cz/public/papers/rsa_ccs17)
if rocacheck.IsWeak(key) {
return badKey("key generated by vulnerable Infineon-based hardware")
}
// Check if the key can be easily factored via Fermat's factorization method.
if policy.fermatRounds > 0 {
err := checkPrimeFactorsTooClose(modulus, policy.fermatRounds)
if err != nil {
return badKey("key generated with factors too close together: %w", err)
}
}
return nil
}
// Returns true iff integer i is divisible by any of the primes in smallPrimes.
//
// Short circuits; execution time is dependent on i. Do not use this on secret
// values.
//
// Rather than checking each prime individually (invoking Mod on each),
// multiply the primes together and let GCD do our work for us: if the
// GCD between <key> and <product of primes> is not one, we know we have
// a bad key. This is substantially faster than checking each prime
// individually.
func checkSmallPrimes(i *big.Int) bool {
smallPrimesSingleton.Do(func() {
smallPrimesProduct = big.NewInt(1)
for _, prime := range smallPrimeInts {
smallPrimesProduct.Mul(smallPrimesProduct, big.NewInt(prime))
}
})
// When the GCD is 1, i and smallPrimesProduct are coprime, meaning they
// share no common factors. When the GCD is not one, it is the product of
// all common factors, meaning we've identified at least one small prime
// which invalidates i as a valid key.
var result big.Int
result.GCD(nil, nil, i, smallPrimesProduct)
return result.Cmp(big.NewInt(1)) != 0
}
// Returns an error if the modulus n is able to be factored into primes p and q
// via Fermat's factorization method. This method relies on the two primes being
// very close together, which means that they were almost certainly not picked
// independently from a uniform random distribution. Basically, if we can factor
// the key this easily, so can anyone else.
func checkPrimeFactorsTooClose(n *big.Int, rounds int) error {
// Pre-allocate some big numbers that we'll use a lot down below.
one := big.NewInt(1)
bb := new(big.Int)
// Any odd integer is equal to a difference of squares of integers:
// n = a^2 - b^2 = (a + b)(a - b)
// Any RSA public key modulus is equal to a product of two primes:
// n = pq
// Here we try to find values for a and b, since doing so also gives us the
// prime factors p = (a + b) and q = (a - b).
// We start with a close to the square root of the modulus n, to start with
// two candidate prime factors that are as close together as possible and
// work our way out from there. Specifically, we set a = ceil(sqrt(n)), the
// first integer greater than the square root of n. Unfortunately, big.Int's
// built-in square root function takes the floor, so we have to add one to get
// the ceil.
a := new(big.Int)
a.Sqrt(n).Add(a, one)
// We calculate b2 to see if it is a perfect square (i.e. b^2), and therefore
// b is an integer. Specifically, b2 = a^2 - n.
b2 := new(big.Int)
b2.Mul(a, a).Sub(b2, n)
for i := 0; i < rounds; i++ {
// To see if b2 is a perfect square, we take its square root, square that,
// and check to see if we got the same result back.
bb.Sqrt(b2).Mul(bb, bb)
if b2.Cmp(bb) == 0 {
// b2 is a perfect square, so we've found integer values of a and b,
// and can easily compute p and q as their sum and difference.
bb.Sqrt(bb)
p := new(big.Int).Add(a, bb)
q := new(big.Int).Sub(a, bb)
return fmt.Errorf("public modulus n = pq factored into p: %s; q: %s", p, q)
}
// Set up the next iteration by incrementing a by one and recalculating b2.
a.Add(a, one)
b2.Mul(a, a).Sub(b2, n)
}
return nil
}
|