1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
package iradix
import (
"bytes"
)
// Iterator is used to iterate over a set of nodes
// in pre-order
type Iterator[T any] struct {
node *Node[T]
stack []edges[T]
}
// SeekPrefixWatch is used to seek the iterator to a given prefix
// and returns the watch channel of the finest granularity
func (i *Iterator[T]) SeekPrefixWatch(prefix []byte) (watch <-chan struct{}) {
// Wipe the stack
i.stack = nil
n := i.node
watch = n.mutateCh
search := prefix
for {
// Check for key exhaustion
if len(search) == 0 {
i.node = n
return
}
// Look for an edge
_, n = n.getEdge(search[0])
if n == nil {
i.node = nil
return
}
// Update to the finest granularity as the search makes progress
watch = n.mutateCh
// Consume the search prefix
if bytes.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else if bytes.HasPrefix(n.prefix, search) {
i.node = n
return
} else {
i.node = nil
return
}
}
}
// SeekPrefix is used to seek the iterator to a given prefix
func (i *Iterator[T]) SeekPrefix(prefix []byte) {
i.SeekPrefixWatch(prefix)
}
func (i *Iterator[T]) recurseMin(n *Node[T]) *Node[T] {
// Traverse to the minimum child
if n.leaf != nil {
return n
}
nEdges := len(n.edges)
if nEdges > 1 {
// Add all the other edges to the stack (the min node will be added as
// we recurse)
i.stack = append(i.stack, n.edges[1:])
}
if nEdges > 0 {
return i.recurseMin(n.edges[0].node)
}
// Shouldn't be possible
return nil
}
// SeekLowerBound is used to seek the iterator to the smallest key that is
// greater or equal to the given key. There is no watch variant as it's hard to
// predict based on the radix structure which node(s) changes might affect the
// result.
func (i *Iterator[T]) SeekLowerBound(key []byte) {
// Wipe the stack. Unlike Prefix iteration, we need to build the stack as we
// go because we need only a subset of edges of many nodes in the path to the
// leaf with the lower bound. Note that the iterator will still recurse into
// children that we don't traverse on the way to the reverse lower bound as it
// walks the stack.
i.stack = []edges[T]{}
// i.node starts off in the common case as pointing to the root node of the
// tree. By the time we return we have either found a lower bound and setup
// the stack to traverse all larger keys, or we have not and the stack and
// node should both be nil to prevent the iterator from assuming it is just
// iterating the whole tree from the root node. Either way this needs to end
// up as nil so just set it here.
n := i.node
i.node = nil
search := key
found := func(n *Node[T]) {
i.stack = append(
i.stack,
edges[T]{edge[T]{node: n}},
)
}
findMin := func(n *Node[T]) {
n = i.recurseMin(n)
if n != nil {
found(n)
return
}
}
for {
// Compare current prefix with the search key's same-length prefix.
var prefixCmp int
if len(n.prefix) < len(search) {
prefixCmp = bytes.Compare(n.prefix, search[0:len(n.prefix)])
} else {
prefixCmp = bytes.Compare(n.prefix, search)
}
if prefixCmp > 0 {
// Prefix is larger, that means the lower bound is greater than the search
// and from now on we need to follow the minimum path to the smallest
// leaf under this subtree.
findMin(n)
return
}
if prefixCmp < 0 {
// Prefix is smaller than search prefix, that means there is no lower
// bound
i.node = nil
return
}
// Prefix is equal, we are still heading for an exact match. If this is a
// leaf and an exact match we're done.
if n.leaf != nil && bytes.Equal(n.leaf.key, key) {
found(n)
return
}
// Consume the search prefix if the current node has one. Note that this is
// safe because if n.prefix is longer than the search slice prefixCmp would
// have been > 0 above and the method would have already returned.
search = search[len(n.prefix):]
if len(search) == 0 {
// We've exhausted the search key, but the current node is not an exact
// match or not a leaf. That means that the leaf value if it exists, and
// all child nodes must be strictly greater, the smallest key in this
// subtree must be the lower bound.
findMin(n)
return
}
// Otherwise, take the lower bound next edge.
idx, lbNode := n.getLowerBoundEdge(search[0])
if lbNode == nil {
return
}
// Create stack edges for the all strictly higher edges in this node.
if idx+1 < len(n.edges) {
i.stack = append(i.stack, n.edges[idx+1:])
}
// Recurse
n = lbNode
}
}
// Next returns the next node in order
func (i *Iterator[T]) Next() ([]byte, T, bool) {
var zero T
// Initialize our stack if needed
if i.stack == nil && i.node != nil {
i.stack = []edges[T]{{edge[T]{node: i.node}}}
}
for len(i.stack) > 0 {
// Inspect the last element of the stack
n := len(i.stack)
last := i.stack[n-1]
elem := last[0].node
// Update the stack
if len(last) > 1 {
i.stack[n-1] = last[1:]
} else {
i.stack = i.stack[:n-1]
}
// Push the edges onto the frontier
if len(elem.edges) > 0 {
i.stack = append(i.stack, elem.edges)
}
// Return the leaf values if any
if elem.leaf != nil {
return elem.leaf.key, elem.leaf.val, true
}
}
return nil, zero, false
}
|