1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
package iradix
import (
"bytes"
"sort"
)
// WalkFn is used when walking the tree. Takes a
// key and value, returning if iteration should
// be terminated.
type WalkFn[T any] func(k []byte, v T) bool
// leafNode is used to represent a value
type leafNode[T any] struct {
mutateCh chan struct{}
key []byte
val T
}
// edge is used to represent an edge node
type edge[T any] struct {
label byte
node *Node[T]
}
// Node is an immutable node in the radix tree
type Node[T any] struct {
// mutateCh is closed if this node is modified
mutateCh chan struct{}
// leaf is used to store possible leaf
leaf *leafNode[T]
// prefix is the common prefix we ignore
prefix []byte
// Edges should be stored in-order for iteration.
// We avoid a fully materialized slice to save memory,
// since in most cases we expect to be sparse
edges edges[T]
}
func (n *Node[T]) isLeaf() bool {
return n.leaf != nil
}
func (n *Node[T]) addEdge(e edge[T]) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= e.label
})
n.edges = append(n.edges, e)
if idx != num {
copy(n.edges[idx+1:], n.edges[idx:num])
n.edges[idx] = e
}
}
func (n *Node[T]) replaceEdge(e edge[T]) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= e.label
})
if idx < num && n.edges[idx].label == e.label {
n.edges[idx].node = e.node
return
}
panic("replacing missing edge")
}
func (n *Node[T]) getEdge(label byte) (int, *Node[T]) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
if idx < num && n.edges[idx].label == label {
return idx, n.edges[idx].node
}
return -1, nil
}
func (n *Node[T]) getLowerBoundEdge(label byte) (int, *Node[T]) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
// we want lower bound behavior so return even if it's not an exact match
if idx < num {
return idx, n.edges[idx].node
}
return -1, nil
}
func (n *Node[T]) delEdge(label byte) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
if idx < num && n.edges[idx].label == label {
copy(n.edges[idx:], n.edges[idx+1:])
n.edges[len(n.edges)-1] = edge[T]{}
n.edges = n.edges[:len(n.edges)-1]
}
}
func (n *Node[T]) GetWatch(k []byte) (<-chan struct{}, T, bool) {
search := k
watch := n.mutateCh
for {
// Check for key exhaustion
if len(search) == 0 {
if n.isLeaf() {
return n.leaf.mutateCh, n.leaf.val, true
}
break
}
// Look for an edge
_, n = n.getEdge(search[0])
if n == nil {
break
}
// Update to the finest granularity as the search makes progress
watch = n.mutateCh
// Consume the search prefix
if bytes.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
var zero T
return watch, zero, false
}
func (n *Node[T]) Get(k []byte) (T, bool) {
_, val, ok := n.GetWatch(k)
return val, ok
}
// LongestPrefix is like Get, but instead of an
// exact match, it will return the longest prefix match.
func (n *Node[T]) LongestPrefix(k []byte) ([]byte, T, bool) {
var last *leafNode[T]
search := k
for {
// Look for a leaf node
if n.isLeaf() {
last = n.leaf
}
// Check for key exhaustion
if len(search) == 0 {
break
}
// Look for an edge
_, n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if bytes.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
if last != nil {
return last.key, last.val, true
}
var zero T
return nil, zero, false
}
// Minimum is used to return the minimum value in the tree
func (n *Node[T]) Minimum() ([]byte, T, bool) {
for {
if n.isLeaf() {
return n.leaf.key, n.leaf.val, true
}
if len(n.edges) > 0 {
n = n.edges[0].node
} else {
break
}
}
var zero T
return nil, zero, false
}
// Maximum is used to return the maximum value in the tree
func (n *Node[T]) Maximum() ([]byte, T, bool) {
for {
if num := len(n.edges); num > 0 {
n = n.edges[num-1].node // bug?
continue
}
if n.isLeaf() {
return n.leaf.key, n.leaf.val, true
} else {
break
}
}
var zero T
return nil, zero, false
}
// Iterator is used to return an iterator at
// the given node to walk the tree
func (n *Node[T]) Iterator() *Iterator[T] {
return &Iterator[T]{node: n}
}
// ReverseIterator is used to return an iterator at
// the given node to walk the tree backwards
func (n *Node[T]) ReverseIterator() *ReverseIterator[T] {
return NewReverseIterator(n)
}
// Iterator is used to return an iterator at
// the given node to walk the tree
func (n *Node[T]) PathIterator(path []byte) *PathIterator[T] {
return &PathIterator[T]{node: n, path: path}
}
// rawIterator is used to return a raw iterator at the given node to walk the
// tree.
func (n *Node[T]) rawIterator() *rawIterator[T] {
iter := &rawIterator[T]{node: n}
iter.Next()
return iter
}
// Walk is used to walk the tree
func (n *Node[T]) Walk(fn WalkFn[T]) {
recursiveWalk(n, fn)
}
// WalkBackwards is used to walk the tree in reverse order
func (n *Node[T]) WalkBackwards(fn WalkFn[T]) {
reverseRecursiveWalk(n, fn)
}
// WalkPrefix is used to walk the tree under a prefix
func (n *Node[T]) WalkPrefix(prefix []byte, fn WalkFn[T]) {
search := prefix
for {
// Check for key exhaustion
if len(search) == 0 {
recursiveWalk(n, fn)
return
}
// Look for an edge
_, n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if bytes.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else if bytes.HasPrefix(n.prefix, search) {
// Child may be under our search prefix
recursiveWalk(n, fn)
return
} else {
break
}
}
}
// WalkPath is used to walk the tree, but only visiting nodes
// from the root down to a given leaf. Where WalkPrefix walks
// all the entries *under* the given prefix, this walks the
// entries *above* the given prefix.
func (n *Node[T]) WalkPath(path []byte, fn WalkFn[T]) {
i := n.PathIterator(path)
for path, val, ok := i.Next(); ok; path, val, ok = i.Next() {
if fn(path, val) {
return
}
}
}
// recursiveWalk is used to do a pre-order walk of a node
// recursively. Returns true if the walk should be aborted
func recursiveWalk[T any](n *Node[T], fn WalkFn[T]) bool {
// Visit the leaf values if any
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
return true
}
// Recurse on the children
for _, e := range n.edges {
if recursiveWalk(e.node, fn) {
return true
}
}
return false
}
// reverseRecursiveWalk is used to do a reverse pre-order
// walk of a node recursively. Returns true if the walk
// should be aborted
func reverseRecursiveWalk[T any](n *Node[T], fn WalkFn[T]) bool {
// Visit the leaf values if any
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
return true
}
// Recurse on the children in reverse order
for i := len(n.edges) - 1; i >= 0; i-- {
e := n.edges[i]
if reverseRecursiveWalk(e.node, fn) {
return true
}
}
return false
}
|