1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*
* File: prism.c
*
* Create a prism from a polygonal cross-section in XY.
* The points must be given in counter-clockwise order as viewed from
* the front (+ve Z).
*
* Author: David Jones
* djones@awesome.berkeley.edu
* 11may91 djones
*
* Adapted for inclusion into the SIPP package: Inge Wallin
* Extended with 2D texture support: Jonas Yngvesson
*/
#include <stdio.h>
#include <math.h>
#include <sipp.h>
#include <primitives.h>
#include <xalloca.h>
Object *
sipp_prism(num_points, points, length, surface, shader, texture)
int num_points;
Vector * points;
double length;
void * surface;
Shader * shader;
int texture;
{
Object * prism;
double * u;
double * v;
int i;
int j;
switch (texture) {
case NATURAL:
u = (double *)alloca((num_points + 1) * sizeof(double));
u[0] = 0.0;
for (i = 1; i <= num_points; i++) {
u[i] = u[i - 1] + sqrt(((points[i % num_points].x
- points[i - 1].x)
* (points[i % num_points].x
- points[i - 1].x))
+ ((points[i % num_points].y
- points[i - 1].y)
* (points[i % num_points].y
- points[i - 1].y)));
}
for (i = 0; i <= num_points; i++) {
u[i] /= u[num_points];
}
break;
case SPHERICAL:
v = (double *)alloca((num_points + 1) * sizeof(double));
for (i = 0; i < num_points; i++) {
v[i] = (atan(length / 2.0
/ sqrt(points[i].x * points[i].x
+ points[i].y * points[i].y))
/ M_PI + 0.5);
}
v[i] = v[0];
case CYLINDRICAL: /* Fall trough */
u = (double *)alloca((num_points + 1) * sizeof(double));
u[0] = atan2(points[0].y, points[0].x);
for (i = 1; i < num_points; i++) {
u[i] = atan2(points[i].y, points[i].x) - u[0];
if (u[i] < 0.0) {
u[i] += 2.0 * M_PI;
}
u[i] /= (2.0 * M_PI);
}
u[0] = 0.0;
u[i] = 1.0;
break;
case WORLD:
default:
break;
}
prism = object_create();
/* The top. */
for (i = 0; i < num_points ; ++i) {
switch (texture) {
case NATURAL:
case CYLINDRICAL:
case SPHERICAL:
vertex_tx_push(points[i].x, points[i].y, length / 2.0,
0.0, 1.0, 0.0);
break;
case WORLD:
default:
vertex_tx_push(points[i].x, points[i].y, length / 2.0,
points[i].x, points[i].y, length / 2.0);
break;
}
}
polygon_push();
object_add_surface(prism, surface_create(surface, shader) );
/* The bottom */
for (i = num_points - 1; i >= 0 ; --i) {
switch (texture) {
case NATURAL:
case CYLINDRICAL:
case SPHERICAL:
vertex_tx_push(points[i].x, points[i].y, -length / 2.0,
0.0, 0.0, 0.0);
break;
case WORLD:
default:
vertex_tx_push(points[i].x, points[i].y, -length / 2.0,
points[i].x, points[i].y, -length / 2.0);
break;
}
}
polygon_push();
object_add_surface(prism, surface_create(surface, shader) );
/* The sides */
for (i = 0; i < num_points ; ++i) {
j = i + 1;
if (j == num_points)
j=0;
switch (texture) {
case NATURAL:
case CYLINDRICAL:
vertex_tx_push(points[i].x, points[i].y, length / 2.0,
u[i], 1.0, 0.0);
vertex_tx_push(points[i].x, points[i].y, -length / 2.0,
u[i], 0.0, 0.0);
vertex_tx_push(points[j].x, points[j].y, -length / 2.0,
u[i + 1], 0.0, 0.0);
vertex_tx_push(points[j].x, points[j].y, length / 2.0,
u[i + 1], 1.0, 0.0);
break;
case SPHERICAL:
vertex_tx_push(points[i].x, points[i].y, length / 2.0,
u[i], v[i], 0.0);
vertex_tx_push(points[i].x, points[i].y, -length / 2.0,
u[i], 1.0 - v[i], 0.0);
vertex_tx_push(points[j].x, points[j].y, -length / 2.0,
u[i + 1], 1.0 - v[i + 1], 0.0);
vertex_tx_push(points[j].x, points[j].y, length / 2.0,
u[i + 1], v[i + 1], 0.0);
break;
case WORLD:
default:
vertex_tx_push(points[i].x, points[i].y, length / 2.0,
points[i].x, points[i].y, length / 2.0);
vertex_tx_push(points[i].x, points[i].y, -length / 2.0,
points[i].x, points[i].y, -length / 2.0);
vertex_tx_push(points[j].x, points[j].y, -length / 2.0,
points[j].x, points[j].y, -length / 2.0);
vertex_tx_push(points[j].x, points[j].y, length / 2.0,
points[j].x, points[j].y, length / 2.0);
break;
}
polygon_push();
object_add_surface(prism, surface_create(surface, shader) );
}
return prism;
}
/*
* A square block. Generated as a prism.
*/
Object *
sipp_block(xsize, ysize, zsize, surface, shader, texture)
double xsize;
double ysize;
double zsize;
void * surface;
Shader * shader;
int texture;
{
Vector coor[4];
xsize /= 2.0;
ysize /= 2.0;
coor[0].x = xsize; coor[0].y = -ysize;
coor[1].x = xsize; coor[1].y = ysize;
coor[2].x = -xsize; coor[2].y = ysize;
coor[3].x = -xsize; coor[3].y = -ysize;
return sipp_prism(4, coor, zsize, surface, shader, texture);
}
/*
* A cube.
*/
Object *
sipp_cube(size, surface, shader, texture)
double size;
void * surface;
Shader * shader;
int texture;
{
return sipp_block(size, size, size, surface, shader, texture);
}
|