File: models.py

package info (click to toggle)
siril 1.4.0~rc2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,352 kB
  • sloc: ansic: 174,082; cpp: 28,254; python: 7,891; makefile: 974; xml: 777; sh: 271
file content (1494 lines) | stat: -rw-r--r-- 61,404 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
# Copyright (C) 2005-2011 Francois Meyer (dulle at free.fr)
# Copyright (C) 2012-2025 team free-astro (see more in AUTHORS file)
# Reference site is https://siril.org
# SPDX-License-Identifier: GPL-3.0-or-later

from dataclasses import dataclass, field
from datetime import datetime
from typing import Optional, Tuple, List, ClassVar
import struct
import logging
import numpy as np
from .enums import BitpixType, StarProfile, SequenceType, DistoType, _Defaults, ImageType
from .translations import _
from .exceptions import SirilError

"""
This submodule contains a number of dataclasses and methods used to model Siril
data structures for use with the sirilpy Siril <-> python interface.
"""

@dataclass
class ImageStats:
    """
    Python equivalent of Siril imstats structure. Contains statistics for
    a particular channel of a Siril image.
    """

    total: int = 0  #: total number of pixels
    ngoodpix: int = 0   #: number of non-zero pixels
    mean: float = 0.0   #: mean value of pixels
    median: float = 0.0 #: median value of pixels
    sigma: float = 0.0  #: standard deviation of pixels
    avgDev: float = 0.0 #: average deviation of pixels
    mad: float = 0.0    #: mean average deviation of pixels
    sqrtbwmv: float = 0.0   #: square root of the biweight midvariance of pixel values
    location: float = 0.0   #: location of pixel values
    scale: float = 0.0  #: scale value of the pixels
    min: float = 0.0    #: minimum pixel value
    max: float = 0.0    #: maximum pixel value
    normValue: float = 0.0  #: norm value of the pixels
    bgnoise: float = 0.0    #: RMS background noise

    @classmethod
    def deserialize(cls, data: bytes) -> 'ImageStats':
        """
        Deserialize binary data into an ImageStats object.

        Args:
            data: (bytes) Binary data to unpack
        Returns: ImageStats object

        Raises: SirilError: If received data size is incorrect
                struct.error: If unpacking fails
        """
        format_string = '!2q12d'  # '!' ensures network byte order

        # Calculate expected size
        expected_size = struct.calcsize(format_string)

        # Verify we got the expected amount of data
        if len(data) != expected_size:
            raise SirilError(
                f"Received stats data size {len(data)} doesn't match expected size {expected_size}"
            )

        # Unpack the binary data
        values = struct.unpack(format_string, data)

        # Create and return an ImageStats object with the unpacked values
        return cls(
            total=values[0],
            ngoodpix=values[1],
            mean=values[2],
            median=values[3],
            sigma=values[4],
            avgDev=values[5],
            mad=values[6],
            sqrtbwmv=values[7],
            location=values[8],
            scale=values[9],
            min=values[10],
            max=values[11],
            normValue=values[12],
            bgnoise=values[13]
        )

@dataclass
class FKeywords:
    """
    Python equivalent of Siril fkeywords structure. Contains the FITS
    header keyword values converted to suitable data types.
    """

    # FITS file data
    bscale: float = 1.0 #: Offset data range to that of unsigned short
    bzero: float = 0.0 #: Default scaling factor
    lo: int = 0 #: MIPS-LO key in FITS file, "Lower visualization cutoff"
    hi: int = 0 #: MIPS-HI key in FITS file, "Upper visualization cutoff"
    flo: np.float32 = 0.0 #: MIPS-LO key in FITS file, "Lower visualization cutoff (float)"
    fhi: np.float32 = 0.0  #: MIPS-Hi key in FITS file, "Upper visualization cutoff (float)"

    # string attributes with corresponding properties
    program: str = "" #: Software that created this HDU
    filename: str = "" #: Original Filename
    row_order: str = "" #: Order of the rows in image array
    filter: str = "" #: Active filter name
    image_type: str = "" #: Type of image
    object: str = "" #: Name of the object of interest
    instrume: str = "" #: Instrument name
    telescop: str = "" #: Telescope used to acquire this image
    observer: str = "" #: Observer name
    bayer_pattern: str = "" #: Bayer color pattern
    sitelat_str: str = "" # [deg] Observation site latitude
    sitelong_str: str = "" # [deg] Observation site longitude
    focname: str = "" #: Focusing equipment name

    # Datetime attributes
    date: Optional[datetime] = None #: UTC date that FITS file was created
    date_obs: Optional[datetime] = None #: YYYY-MM-DDThh:mm:ss observation start, UT

    # Remaining attributes
    data_max: float = 0.0 #: used to check if 32b float is in the [0, 1] range
    data_min: float = 0.0  #: used to check if 32b float is in the [0, 1] range
    pixel_size_x: float = 0.0 #: XPIXSZ FITS header card as a float
    pixel_size_y: float = 0.0 #: YPIXSZ FITS header card as a float
    binning_x: int = 1 #: XBINNING FITS header card as an int
    binning_y: int = 1 #: YBINNING FITS header card as an int

    expstart: float = 0.0 #: Exposure start as a Julian date
    expend: float = 0.0 #: Exposure end as a Julian date

    # Camera settings
    bayer_xoffset: int = 0 #: X offset of the Bayer pattern
    bayer_yoffset: int = 0 #: Y offset of the Bayer pattern
    airmass: float = 1.0 #: Airmass at frame center (Gueymard 1993)
    focal_length: float = 0.0 #: [mm] Focal length
    flength: float = 0.0 #: [mm] Focal length
    iso_speed: float = 0.0 #: ISO speed value as a float
    exposure: float = 0.0 #: Exposure time as a float (s)
    aperture: float = 0.0 #: Aperture value as a float
    ccd_temp: float = 0.0 #: CCD temperature as a float
    set_temp: float = 0.0 #: CCD set temperature as a float
    livetime: float = 0.0 #: Sum of exposure times (s)
    stackcnt: int = 0 #: Number of stacked frames
    cvf: float = 0.0 #: Conversion factor (e- / ADU)
    gain: int = 0 #: Gain factor read in camera
    offset: int = 0 #: Offset value read in camera

    # Focuser data
    focuspos: int = 0 #: Focuser position
    focussz: int = 0 #: [um] Focuser step size
    foctemp: float = 0.0 #: Focuser temperature

    # Position data
    centalt: float = 0.0 #: [deg] Altitude of telescope
    centaz: float = 0.0 #: [deg] Azimuth of telescope
    sitelat: float = 0.0 # [deg] Observation site latitude
    sitelong: float = 0.0 #: [deg] Observation site longitude
    siteelev: float = 0.0 #: [m] Observation site elevation

    # Plate solution data:
    objctra: Optional[str] = None #: object RA as string, if available
    objctdec: Optional[str] = None #: object Dec as string, if available
    ra: Optional[float] = None #: RA as float, if available
    dec: Optional[float] = None #: Dec as float, if available
    pltsolvd: bool = False #: whether plate solved or not
    pltsolvd_comment: Optional[str] = None #: plate solution comment

    # constants used for packing/unpacking
    FLEN_VALUE: ClassVar[int] = 71

    # Build keyword-format parts that mirror keywords_to_py() in C.
    # This is the keyword block only (strings + numeric fields + timestamps + wcs + pltsolvd)
    _KEYWORD_FORMAT_PARTS: ClassVar[List[str]] = [
        f'{FLEN_VALUE}s',  # program
        f'{FLEN_VALUE}s',  # filename
        f'{FLEN_VALUE}s',  # row_order
        f'{FLEN_VALUE}s',  # filter
        f'{FLEN_VALUE}s',  # image_type
        f'{FLEN_VALUE}s',  # object
        f'{FLEN_VALUE}s',  # instrume
        f'{FLEN_VALUE}s',  # telescop
        f'{FLEN_VALUE}s',  # observer
        f'{FLEN_VALUE}s',  # sitelat_str
        f'{FLEN_VALUE}s',  # sitelong_str
        f'{FLEN_VALUE}s',  # bayer_pattern
        f'{FLEN_VALUE}s',  # focname
        f'{FLEN_VALUE}s',  # objctra (RA as a string)
        f'{FLEN_VALUE}s',  # objctdec (Dec as a string)
        f'{FLEN_VALUE}s',  # pltsolvd_comment
        'd',  # bscale
        'd',  # bzero
        'Q',  # lo (uint64 padded)
        'Q',  # hi (uint64 padded)
        'd',  # flo
        'd',  # fhi
        'd',  # data_max
        'd',  # data_min
        'd',  # pixel_size_x
        'd',  # pixel_size_y
        'Q',  # binning_x (uint64)
        'Q',  # binning_y (uint64)
        'd',  # expstart
        'd',  # expend
        'd',  # centalt
        'd',  # centaz
        'd',  # sitelat
        'd',  # sitelong
        'd',  # siteelev
        'q',  # bayer_xoffset (int64)
        'q',  # bayer_yoffset (int64)
        'd',  # airmass
        'd',  # focal_length
        'd',  # flength
        'd',  # iso_speed
        'd',  # exposure
        'd',  # aperture
        'd',  # ccd_temp
        'd',  # set_temp
        'd',  # livetime
        'Q',  # stackcnt (uint64)
        'd',  # cvf
        'q',  # key_gain (int64)
        'q',  # key_offset (int64)
        'q',  # focuspos (int64)
        'q',  # focussz (int64)
        'd',  # foctemp
        'q',  # date (int64 unix timestamp)
        'q',  # date_obs (int64 unix timestamp)
        'd',  # ra
        'd',  # dec
        '?',  # pltsolvd (bool 1 byte)
    ]

    # Full struct format (network order)
    KEYWORDS_FORMAT: ClassVar[str] = '!' + ''.join(_KEYWORD_FORMAT_PARTS)
    KEYWORDS_SIZE: ClassVar[int] = struct.calcsize(KEYWORDS_FORMAT)

    @classmethod
    def deserialize(cls, data: bytes) -> 'FKeywords':
        """
        Deserialize binary keyword-block (the block produced by keywords_to_py())
        into an FKeywords object. Raises ValueError on size mismatch and SirilError
        for other unpacking issues.
        """
        if len(data) != cls.KEYWORDS_SIZE:
            raise ValueError(f"Received keyword data size {len(data)} doesn't match expected size {cls.KEYWORDS_SIZE}")

        try:
            values = struct.unpack(cls.KEYWORDS_FORMAT, data)

            def decimal_to_dms(decimal, is_latitude=True):
                absolute = abs(decimal)
                if is_latitude:
                    direction = 'N' if decimal >= 0 else 'S'
                else:
                    direction = 'E' if decimal >= 0 else 'W'
                degrees = int(absolute)
                minutes_decimal = (absolute - degrees) * 60
                minutes = int(minutes_decimal)
                seconds = round((minutes_decimal - minutes) * 60, 2)
                return f"{degrees}°{minutes}'{seconds}\"{direction}"

            def decode_string(s) -> str:
                if isinstance(s, bytes):
                    return s.decode("utf-8", errors="ignore").rstrip("\x00")
                elif isinstance(s, str):
                    return s.rstrip("\x00")
                else:
                    return str(s)

            def timestamp_to_datetime(timestamp: int) -> Optional[datetime]:
                return datetime.fromtimestamp(timestamp) if timestamp != 0 else None

            # Replace default sentinel values (if you use a sentinel list _Defaults.VALUES)
            values = [None if val in _Defaults.VALUES else val for val in values]

            # If textual sitelat/sitelong are empty, fill them from numeric values
            if (not decode_string(values[9])) and values[32]:
                values[9] = decimal_to_dms(values[32])
            if (not decode_string(values[10])) and values[33]:
                values[10] = decimal_to_dms(values[33])

            # Map unpacked values into named fields (indexing follows KEYWORD_FORMAT_PARTS)
            return cls(
                program=decode_string(values[0]),
                filename=decode_string(values[1]),
                row_order=decode_string(values[2]),
                filter=decode_string(values[3]),
                image_type=decode_string(values[4]),
                object=decode_string(values[5]),
                instrume=decode_string(values[6]),
                telescop=decode_string(values[7]),
                observer=decode_string(values[8]),
                sitelat_str=decode_string(values[9]),
                sitelong_str=decode_string(values[10]),
                bayer_pattern=decode_string(values[11]),
                focname=decode_string(values[12]),
                objctra=decode_string(values[13]),
                objctdec=decode_string(values[14]),
                pltsolvd_comment=decode_string(values[15]),
                bscale=values[16],
                bzero=values[17],
                lo=values[18],
                hi=values[19],
                flo=values[20] if values[21] != 0.0 else None,
                fhi=values[21] if values[21] != 0.0 else None,
                data_max=values[22],
                data_min=values[23],
                pixel_size_x=values[24] if values[24] and values[24] > 0.0 else None,
                pixel_size_y=values[25] if values[25] and values[25] > 0.0 else None,
                binning_x=values[26] if values[26] and values[26] > 1 else 1,
                binning_y=values[27] if values[27] and values[27] > 1 else 1,
                expstart=values[28],
                expend=values[29],
                centalt=values[30],
                centaz=values[31],
                sitelat=values[32],
                sitelong=values[33],
                siteelev=values[34],
                bayer_xoffset=values[35],
                bayer_yoffset=values[36],
                airmass=values[37],
                focal_length=values[38] if values[38] and values[38] > 0.0 else None,
                flength=values[39] if values[39] and values[39] > 0.0 else None,
                iso_speed=values[40],
                exposure=values[41],
                aperture=values[42],
                ccd_temp=values[43],
                set_temp=values[44],
                livetime=values[45],
                stackcnt=values[46],
                cvf=values[47],
                gain=values[48],
                offset=values[49],
                focuspos=values[50],
                focussz=values[51],
                foctemp=values[52],
                date=timestamp_to_datetime(values[53]),
                date_obs=timestamp_to_datetime(values[54]),
                ra=values[55],
                dec=values[56],
                pltsolvd=values[57]
            )
        except Exception as e:
            raise SirilError(f"Deserialization error: {e}") from e

@dataclass
class FFit:
    """
    Python equivalent of Siril ffit (FITS) structure, holding image
    pixel data and metadata.
    """
    bitpix: Optional[BitpixType] = None #: FITS header specification of the image data type.
    orig_bitpix: Optional[BitpixType] = None #: FITS header specification of the original image data type.
    naxis: int = 0 #: The number of axes (2 for a mono image, 3 for a RGB image). Corresponds to the FITS kwyword NAXIS.
    _naxes: Tuple[int, int, int] = (0, 0, 0) #: A tuple holding the image dimensions.

    keywords: FKeywords = field(default_factory=FKeywords) #: A FKeywords object containing FITS header keywords.
    checksum: bool = False #: Whether Siril will write FITS data checksums for this file.

    header: Optional[str] = None #: The FITS header as a string.
    unknown_keys: Optional[str] = None #: All unknown FITS header keys as a string. This gives access to header cards that Siril does not use internally.

    stats: List[Optional[ImageStats]] = field(default_factory=lambda: [ImageStats() for _ in range(3)]) #: A list of ImageStats objects, one for each channel.
    mini: float = 0.0 #: The minimum value across all image channels.
    maxi: float = 0.0 #: The maximum value across all image channels.
    neg_ratio: np.float32 = 0.0 #: The ratio of negative pixels to the total pixels.

    _data: Optional[np.ndarray] = None #: Holds the image data as a numpy array.

    top_down: bool = False #: Specifies the ROWORDER for this image. The FITS specification directs that FITS should be stored bottom-up, but many CMOS sensors are natively TOP_DOWN and capture software tends to save FITS images captured by these sensors as TOP_DOWN.
    _focalkey: bool = False
    _pixelkey: bool = False

    history: list[str] = field(default_factory=list) #: Contains a list of strings holding the HISTORY entries for this image.

    color_managed: bool = False #: Specifies whether the image is color managed or not.
    _icc_profile: Optional[bytes] = None #: Holds the ICC profile for the image as Bytes. This can be used by some modules including pillow.

    def __post_init__(self):
        """Initialize after creation"""
        if self.history is None:
            self.history = []

    @property
    def data(self) -> Optional[np.ndarray]:
        """
        The pixel data of the current image loaded in Siril, stored as a NumPy array
        """
        return self._data

    @data.setter
    def data(self, value: Optional[np.ndarray]):
        """
        Set the pixel data of the FFit to the provided NumPy array. Note: this
        does not update the image loaded in Siril - ``SirilInterface.set_image_pixeldata()``
        must be used to achieve this.

        Args:
            numpy.ndarray: NumPy array representing the pixel data. This must
                           be in either uint16 or float32 planar format

        Raises:
            ValueError: if the array shape is incompatible
        """

        if value is not None:
            shape = value.shape
            if len(shape) == 2:
                self._naxes = (shape[2], shape[1], 1)  # width, height, 1 channel
            elif len(shape) == 3:
                if shape[2] not in (1, 3):
                    raise ValueError(_("Third dimension must be 1 or 3"))
                self._naxes = (shape[2], shape[1], shape[0])  # width, height, channels
            else:
                raise ValueError(_("Data must be 2D or 3D"))
            self._update_naxis()
        self._data = value

    def _update_naxis(self):
        """Update naxis based on naxes value"""
        self.naxis = 3 if self._naxes[2] == 3 else 2

    @property
    def naxes(self) -> Tuple[int, int, int]:
        """
        The naxes tuple holds the image dimensions as width x height x channels. Note that the axis ordering differs between Siril representation as held in naxes and numpy representation as held in _data.shape (which is channels x height x width)
        """
        return self._naxes

    @property
    def width(self) -> int:
        """Image width"""
        return self._naxes[0]

    @property
    def height(self) -> int:
        """Image height"""
        return self._naxes[1]

    @property
    def channels(self) -> int:
        """Image channels"""
        return self._naxes[2]

    @property
    def icc_profile(self) -> Optional[bytes]:
        """
        The ICC profile as raw bytes data. This may be converted
        for use by modules such as pillow which can handle ICC profiles.
        """
        return self._icc_profile

    @icc_profile.setter
    def icc_profile(self, value: Optional[bytes]):
        """
        Set ICC profile and update color_managed flag. Note this only
        updates the python FFit structure: the API does not currently
        support setting the ICC profile of the currently loaded FITS image.
        """
        self._icc_profile = value
        self.color_managed = value is not None

    def allocate_data(self):
        """
        Allocate memory for image data with appropriate type. self.width, self.height,
        self.naxis, self.naxes and self.dtype must be set before calling this
        method.

        Raises:
            ValueError: if self.bitpix is not set to BitpixType.USHORT_IMG or BitpixType.FLOAT_IMG
        """
        shape = (self.height, self.width) if self.naxis == 2 else (self.channels, self.height, self.width)
        if self.bitpix == BitpixType.USHORT_IMG:
            self.data = np.zeros(shape, dtype=np.uint16)
        elif self.bitpix == BitpixType.FLOAT_IMG:
            self.data = np.zeros(shape, dtype=np.float32)
        else:
            raise ValueError(_("Error in FFit.allocate_data(): bitpix not set"))

    def ensure_data_type(self, target_type=None):
        """
        Ensure data is in the correct type with proper scaling

        Args:
            target_type: Optional np.dtype to convert to.
                         If None, uses self.type

        Raises:
            ValueError: if the conversion is between data types that are not
                        internally used by Siril for calculation
        """
        if self.data is None:
            return

        # Handle input type and determine target dtype
        if target_type is None:
            type_to_use = self.data.dtype
        elif target_type in (np.float32, np.uint16):
            type_to_use = target_type
        elif isinstance(target_type, np.dtype):
            raise ValueError(f"Unsupported type conversion from {self.data.dtype} to {type_to_use}")
        else:
            raise ValueError(f"Unrecognized target_type {target_type}")

        if self.data.dtype == type_to_use:
            if type_to_use == np.uint16:
                self.bitpix = BitpixType.USHORT_IMG
            elif type_to_use == np.float32:
                self.bitpix = BitpixType.FLOAT_IMG
            # Nothing else to do
            return

        if type_to_use == np.float32 and self.data.dtype == np.uint16:
            # Convert from USHORT (0-65535) to FLOAT (0.0-1.0)
            self._data = self.data.astype(np.float32) / 65535.0
            self.bitpix = BitpixType.FLOAT_IMG
        elif type_to_use == np.uint16 and self.data.dtype == np.float32:
            # Convert from FLOAT (0.0-1.0) to USHORT (0-65535)
            self._data = (self.data * 65535.0).clip(0, 65535).astype(np.uint16)
            self.bitpix = BitpixType.USHORT_IMG
        else:
            raise ValueError(f"Unsupported type conversion from {self.data.dtype} to {type_to_use}")

    def get_channel(self, channel: int) -> np.ndarray:
        """
        Get a specific channel of the pixel data. Note that this does
        not pull pixel data directly from the image loaded in Siril: that must
        previously have been obtained using get_image_pixeldata() or get_image()
        """
        if self.data is None:
            raise ValueError(_("No data allocated"))
        if self.naxis == 2:
            if channel != 0:
                raise ValueError(_("Cannot get channel > 0 for 2D data"))
            return self.data
        return self.data[channel, ...]

    def estimate_noise(self, array: np.ndarray, nullcheck: Optional[bool] = True, nullvalue: Optional[float] = 0.0) -> float:
        """
        Estimate the background noise in the input image using the sigma of first-order differences.

        noise = 1.0 / sqrt(2) * RMS of (flux[i] - flux[i-1])

        Parameters:
            array (np.ndarray): 2D array of image pixels (np.uint16 or np.float32).
            nullcheck (bool): If True, check for null values.
            nullvalue: The value of null pixels (only used if nullcheck is True).

        Returns:
            float: Estimated noise value.

        Raises:
            ValueError: if the array is the wrong shape
        """
        farray = array.astype(np.float32)
        if farray.ndim != 2:
            raise ValueError("Input array must be a 2D array.")

        ny, nx = farray.shape
        if nx < 3:
            return 0.0  # Not enough pixels in a row to compute differences

        diffs = []
        scale_factor = 1.0 / np.sqrt(2.0)

        for row in farray:
            # Handle null values if required
            if nullcheck:
                row = row[row != nullvalue]

            # Skip row if it has less than 2 valid pixels
            if len(row) < 2:
                continue

            # Compute first-order differences
            differences = np.diff(row)

            # Compute standard deviation with iterative sigma clipping
            for _ in range(3):  # NITER = 3
                mean = np.mean(differences)
                stdev = np.std(differences)
                if stdev == 0:
                    break
                differences = differences[np.abs(differences - mean) < 3 * stdev]  # SIGMA_CLIP = 3

            if len(differences) > 0:
                diffs.append(np.std(differences))

        if not diffs:
            return 0.0

        # Compute median of standard deviations
        median_stdev = np.median(diffs)
        return scale_factor * median_stdev

    def update_stats(self):
        """
        Update image statistics for all channels. Note that this only
        updates the statistics based on the NumPy array representing pixel data
        in the python FFit object, it does not update the statistics of the
        image in Siril.
        """
        if self.data is None:
            raise ValueError(_("No data allocated"))

        for i in range(self.naxes[2]):
            try:
                channel_data = self.get_channel(i)
                if not isinstance(channel_data, np.ndarray):
                    raise TypeError(f"Channel data must be a NumPy array, got {type(channel_data)}")

                stats = self.stats[i] or ImageStats()

                # Handle case where channel_data is all NaN
                if np.all(np.isnan(channel_data)):
                    raise ValueError(f"Channel {i} contains only NaN values")

                # Update basic statistics - these should work even with all zeros
                stats.total = channel_data.size
                stats.ngoodpix = np.count_nonzero(~np.isnan(channel_data))

                # Remove both zeros and NaN values for remaining calculations
                nonzero = channel_data[~np.isnan(channel_data) & (channel_data != 0)]

                # Check if we have any valid non-zero pixels
                if nonzero.size > 0:
                    # Check for infinite values
                    if np.any(np.isinf(nonzero)):
                        raise ValueError(f"Channel {i} contains infinite values")

                    try:
                        stats.mean = np.mean(nonzero)
                        stats.median = np.median(nonzero)
                        stats.sigma = np.std(nonzero)
                        stats.min = np.min(nonzero)
                        stats.max = np.max(nonzero)

                        # Verify results are finite
                        if not all(np.isfinite(x) for x in [stats.mean, stats.median, stats.sigma, stats.min, stats.max]):
                            raise ValueError(f"Non-finite statistics computed for channel {i}")

                        stats.bgnoise = self.estimate_noise(channel_data)

                        # More complex statistics
                        deviations = np.abs(nonzero - stats.median)
                        stats.mad = np.median(deviations)
                        stats.avgDev = np.mean(deviations)

                        # Verify complex stats are finite
                        if not all(np.isfinite(x) for x in [stats.bgnoise, stats.mad, stats.avgDev]):
                            raise ValueError(f"Non-finite advanced statistics computed for channel {i}")

                    except (RuntimeWarning, RuntimeError) as e:
                        # Handle any numerical computation errors
                        raise ValueError(f"Error computing statistics for channel {i}: {str(e)}") from e

                else:
                    # Set all statistics to zero when there are no valid non-zero pixels
                    stats.mean = 0
                    stats.median = 0
                    stats.sigma = 0
                    stats.min = 0
                    stats.max = 0
                    stats.bgnoise = 0
                    stats.mad = 0
                    stats.avgDev = 0

                self.stats[i] = stats

            except Exception as e:
                # Log the error and set all statistics to zero for this channel
                logging.error("Error processing channel %d: %s", i, str(e))
                stats = ImageStats()
                stats.total = channel_data.size if 'channel_data' in locals() else 0
                stats.ngoodpix = 0
                stats.mean = 0
                stats.median = 0
                stats.sigma = 0
                stats.min = 0
                stats.max = 0
                stats.bgnoise = 0
                stats.mad = 0
                stats.avgDev = 0
                self.stats[i] = stats

    def __str__(self):
        """For pretty-printing sequence information"""
        pretty = 'FITS image'
        if self.keywords is not None:
            pretty += f'\nObject: {self.keywords.object}'
            if self.keywords.telescop is not None:
                pretty += f'\nTelescope: {self.keywords.telescop}'
            if self.keywords.instrume is not None:
                pretty += f'\nInstrument: {self.keywords.instrume}'
            if self.keywords.observer is not None:
                pretty += f'\nObserver: {self.keywords.observer}'
            if self.keywords.date_obs is not None:
                pretty += f'\nObservation Date: {self.keywords.date_obs}'
            if self.keywords.expstart is not None:
                pretty += f'\nExposure start: {self.keywords.expstart}'
            if self.keywords.expend is not None:
                pretty += f'\nExposure end: {self.keywords.expend}'
            if self.keywords.exposure is not None:
                pretty += f'\nExposure time: {self.keywords.exposure}'
            if self.keywords.livetime is not None:
                pretty += f'\nLive time: {self.keywords.livetime}'
            if self.keywords.sitelat is not None:
                pretty += f'\nLatitude: {self.keywords.sitelat}'
            if self.keywords.sitelong is not None:
                pretty += f'\nLongitude: {self.keywords.sitelong}'
            if self.keywords.siteelev is not None:
                pretty += f'\nElevation: {self.keywords.siteelev}'
            if self.keywords.gain is not None:
                pretty += f'\nGain: {self.keywords.gain}'
            if self.keywords.offset is not None:
                pretty += f'\nOffset: {self.keywords.offset}'
            if self.keywords.ccd_temp is not None:
                pretty += f'\nCCD temp: {self.keywords.ccd_temp}'
            if self.keywords.focal_length is not None:
                pretty += f'\nFocal length: {self.keywords.focal_length}'
        pretty += f'\nBits per pixel: {self.bitpix}'
        if self.naxis == 2:
            pretty += f'\nDimensions: {self._naxes[0]} x {self._naxes[1]} (1 channel)'
        else:
            pretty += f'\nDimensions: {self._naxes[0]} x {self._naxes[1]} ({self._naxes[2]} channels)'
        if self.data is not None:
            pretty += f'\nPixel data type: {self.data.dtype}'
        else:
            pretty += '\nNo pixel data (only metadata loaded)'
        return pretty

@dataclass
class Homography:
    """
    Python equivalent of the Siril Homography structure. Contains coefficients
    for the Homography matrix that maps a sequence frame onto the reference
    frame.
    """
    h00: float = 0.0 #: Homography matrix H00
    h01: float = 0.0 #: Homography matrix H01
    h02: float = 0.0 #: Homography matrix H02
    h10: float = 0.0 #: Homography matrix H10
    h11: float = 0.0 #: Homography matrix H11
    h12: float = 0.0 #: Homography matrix H12
    h20: float = 0.0 #: Homography matrix H20
    h21: float = 0.0 #: Homography matrix H21
    h22: float = 0.0 #: Homography matrix H22
    pair_matched: int = 0 #: number of pairs matched
    Inliers: int = 0 #: number of inliers kept after RANSAC step

@dataclass
class BGSample:
    """
    Python equivalent of the Siril background_sample struct. Used to hold
    background sample data obtained from Siril, or to generate or modify
    background sample data to set in Siril.
    A BGSample can be constructed as:
    - s1 = BGSample(x=1.0, y=2.0)
    - s2 = BGSample(position=(1.0, 2.0))
    - s3 = BGSample(x=1.0, y=2.0, mean=0.5, size=31)
    """
    median: Tuple[float, float, float] = (0.0, 0.0, 0.0) #: Median values for R, G and B channels. For mono images only median[0] is used.
    mean: float = 0.0
    min: float = 0.0
    max: float = 0.0
    size: int = field(default=25, init=False)  #: The default size matches the size of Siril bg samples.
    valid: bool = True  #: Samples default to being valid
    position: Optional[Tuple[float, float]] = field(default=None, init=False)  #: Position in (x, y) image coordinates

    def __init__(self, x=None, y=None, position=None, size=25, **kwargs):
        """
        Custom constructor to handle both (x, y) and position arguments while allowing other attributes.
        Ensures `size`, if specified, is an odd number.
        """
        if (x is not None or y is not None) and position is not None:
            raise ValueError("Cannot provide both position tuple and x,y coordinates")
        if (x is not None) ^ (y is not None):  # XOR check
            raise ValueError("Must provide both x and y coordinates")
        if position is None and x is None and y is None:
            raise ValueError("Must provide either both x and y coordinates or a position tuple")

        # Assign position
        self.position = position if position is not None else (float(x), float(y))

        # Validate and assign size
        if size % 2 == 0:
            raise ValueError("Size must be an odd number")
        if size < 0:
            raise ValueError("Size must be positive")
        self.size = size

        # Manually initialize other dataclass fields from kwargs
        for field_name in self.__dataclass_fields__:
            if field_name not in {"position", "size"}:  # Already set manually
                setattr(self, field_name, kwargs.get(field_name, getattr(self.__class__, field_name)))

    @classmethod
    def deserialize(cls, data: bytes) -> 'BGSample':
        """
        Deserialize a portion of a buffer into a BGSample object

        Args:
            data (bytes): The full binary buffer containing BGSample data

        Returns:
            BGSample: A BGSample object

        Raises:
            ValueError: If the buffer slice size does not match the expected size.
            struct.error: If there is an error unpacking the binary data.
        """
        format_string = '!6dQ2dQ' # Define the format string based on background_sample structure
        fixed_size = struct.calcsize(format_string)

        # Verify buffer slice
        if len(data) != fixed_size:
            raise ValueError(
                f"Data size {len(data)} doesn't match expected size {fixed_size}"
            )

        try:
            # Extract the bytes for this struct and unpack
            values = struct.unpack(format_string, data)

            return cls(
                        median = (values[0], values[1], values[2]),
                        mean = values[3],
                        min = values[4],
                        max = values[5],
                        size = values[6],
                        position = (values[7], values[8]),
                        valid = bool(values[9])
            )
        except struct.error as e:
            raise SirilError(f"Deserialization error: {e}") from e

@dataclass
class PSFStar:
    """
    Python equivalent of the Siril fwhm_struct structure. Contains
    data on a modelled fit to a star identified in the image.
    """
    star_name: Optional[str] = field(
        default=None,
        metadata={"doc": "Name or identifier of the star"}
    )
    B: float = 0.0              #: average sky background value
    A: float = 0.0              #: amplitude
    x0: float = 0.0            #: x coordinate of the peak
    y0: float = 0.0            #: y coordinate of the peak
    sx: float = 0.0            #: Size of the fitted function on the x axis in PSF coordinates
    sy: float = 0.0            #: Size of the fitted function on the y axis in PSF coordinates
    fwhmx: float = 0.0         #: FWHM in x axis in pixels
    fwhmy: float = 0.0         #: FWHM in y axis in pixels
    fwhmx_arcsec: float = 0.0  #: FWHM in x axis in arc seconds
    fwhmy_arcsec: float = 0.0  #: FWHM in y axis in arc seconds
    angle: float = 0.0         #: angle of the x and yaxes with respect to the image x and y axes
    rmse: float = 0.0          #: RMSE of the minimization
    sat: float = 0.0           #: Level above which pixels have satured
    R: int = 0                 #: Optimized box size to enclose sufficient pixels in the background
    has_saturated: bool = False #: Shows whether the star is saturated or not

    # Moffat parameters
    beta: float = 0.0          #: Moffat equation beta parameter
    profile: StarProfile = StarProfile.GAUSSIAN  # Whether profile is Gaussian or Moffat

    xpos: float = 0.0          #: x position of the star in the image
    ypos: float = 0.0          #: y position of the star in the image

    # photometry data
    mag: float = 0.0           #: (V) magnitude, approximate or accurate
    Bmag: float = 0.0          #: B magnitude
    s_mag: float = 999.99      #: error on the (V) magnitude
    s_Bmag: float = 999.99     #: error on the B magnitude
    SNR: float = 0.0           #: SNR of the star
    BV: float = 0.0            #: only used to pass data in photometric color calibration

    # uncertainties
    B_err: float = 0.0 #: error in B
    A_err: float = 0.0 #: error in A
    x_err: float = 0.0 #: error in x
    y_err: float = 0.0 #: error in y
    sx_err: float = 0.0 #: error in sx
    sy_err: float = 0.0 #: error in sy
    ang_err: float = 0.0 #: error in angle
    beta_err: float = 0.0 #: error in beta

    layer: int = 0  #: image channel on which the star modelling was carried out
    units: Optional[str] = None #: Units
    ra: float = 0.0            #: Right Ascension
    dec: float = 0.0           #: Declination

    @classmethod
    def deserialize(cls, data: bytes) -> 'PSFStar':
        """
        Deserialize a portion of a buffer into a PSFStar object.

        Args:
            data: (bytes) The full binary buffer containing PSFStar data.

        Returns:
            PSFStar object

        Raises:
            ValueError: If the buffer slice size does not match the expected size.
            struct.error: If there is an error unpacking the binary data.
        """
        format_string = '!13d2qdq16dqdd'  # Define the format string based on PSFStar structure
        expected_size = struct.calcsize(format_string)
        # Verify we got the expected amount of data

        if len(data) != expected_size:
            raise SirilError(f"Received stats data size {len(data)} doesn't match expected size {expected_size}")


        try:
            # Extract the bytes for this struct and unpack
            values = struct.unpack(format_string, data)

            return cls(
                B=values[0], A=values[1], x0=values[2], y0=values[3],
                sx=values[4], sy=values[5], fwhmx=values[6], fwhmy=values[7],
                fwhmx_arcsec=values[8], fwhmy_arcsec=values[9], angle=values[10],
                rmse=values[11], sat=values[12], R=values[13],
                has_saturated=bool(values[14]), beta=values[15],
                profile=values[16], xpos=values[17], ypos=values[18],
                mag=values[19], Bmag=values[20], s_mag=values[21],
                s_Bmag=values[22], SNR=values[23], BV=values[24],
                B_err=values[25], A_err=values[26], x_err=values[27],
                y_err=values[28], sx_err=values[29], sy_err=values[30],
                ang_err=values[31], beta_err=values[32], layer=values[33],
                ra=values[34], dec=values[35]
            )
        except struct.error as e:
            raise SirilError(f"Deserialization error: {e}") from e

@dataclass
class RegData:
    """Python equivalent of Siril regdata structure"""
    fwhm: float = 0.0                    #: copy of fwhm->fwhmx, used as quality indicator
    weighted_fwhm: np.float32 = 0.0      #: used to exclude spurious images
    roundness: np.float32 = 0.0          #: fwhm->fwhmy / fwhm->fwhmx, 0 when uninit, ]0, 1] when set
    quality: float = 0.0                 #: measure of image quality
    background_lvl: np.float32 = 0.0     #: background level
    number_of_stars: int = 0             #: number of stars detected in the image
    H: Homography = field(default_factory=Homography)   #: Stores a homography matrix describing the affine transform from this frame to the reference frame

    @classmethod
    def deserialize(cls, data: bytes) -> 'RegData':
        """
        Deserialize a binary response into a RegData object.

        Args:
            data (bytes): Binary data to unpack

        Returns: RegData object

        Raises: SirilError if the received data doesn't match the expected size'
                struct.error If unpacking fails
        """
        # Calculate expected size
        format_string = '!5dQ9d2Q'
        expected_size = struct.calcsize(format_string)

        # Verify we got the expected amount of data
        if len(data) != expected_size:
            raise SirilError(f"Received stats data size {len(data)} doesn't match expected size {expected_size}")

        try:
            values = struct.unpack(format_string, data)
            return cls(
                fwhm=values[0],
                weighted_fwhm=values[1],
                roundness=values[2],
                quality=values[3],
                background_lvl=values[4],
                number_of_stars=values[5],
                H=Homography(
                    h00=values[6],
                    h01=values[7],
                    h02=values[8],
                    h10=values[9],
                    h11=values[10],
                    h12=values[11],
                    h20=values[12],
                    h21=values[13],
                    h22=values[14],
                    pair_matched=values[15],
                    Inliers=values[16]
                )
            )
        except struct.error as e:
            raise SirilError(f"Deserialization error: {e}") from e

    def __repr__(self):
        attrs = [f"    {k}={getattr(self, k)}" for k in self.__dataclass_fields__]
        return f"{self.__class__.__name__}(\n" + ",\n".join(attrs) + "\n)"

@dataclass
class ImgData:
    """Python equivalent of Siril imgdata structure"""
    filenum: int = 0              #: real file index in the sequence
    incl: bool = False           #: selected in the sequence
    date_obs: Optional[datetime] = None  #: date of the observation
    airmass: float = 0.0         #: airmass of the image
    rx: int = 0                 #: width
    ry: int = 0                 #: height

    def __repr__(self):
        attrs = [f"    {k}={getattr(self, k)}" for k in self.__dataclass_fields__]
        return f"{self.__class__.__name__}(\n" + ",\n".join(attrs) + "\n)"

    def __str__(self):
        if self == DistoType.DISTO_UNDEF:
            return "No distortion"
        if self == DistoType.DISTO_IMAGE:
            return "Distortion from current image"
        if self == DistoType.DISTO_FILE:
            return "Distortion from given file"
        if self == DistoType.DISTO_MASTER:
            return "Distortion from master files"
        if self == DistoType.DISTO_FILES:
            return "Distortion stored in each file"
        if self == DistoType.DISTO_FILE_COMET:
            return "Cometary alignement"
        return "Unknown distortion type"

    @classmethod
    def deserialize(cls, response):
        """
        Deserialize binary response into an ImgData object.

        Args:
            response (bytes): Binary data to unpack.

        Returns:
            ImgData: An ImgData object with deserialized data.

        Raises:
            ValueError: If received data size is incorrect.
            struct.error: If unpacking fails.
        """
        format_string = '!3qd2q'

        # Verify data size
        expected_size = struct.calcsize(format_string)
        if len(response) != expected_size:
            raise ValueError(
                f"Received image data size {len(response)} doesn't match expected size {expected_size}"
            )

        try:
            # Unpack the binary data
            values = struct.unpack(format_string, response)

            return cls(
                filenum=values[0],
                incl=values[1],
                date_obs=datetime.fromtimestamp(values[2]) if values[2] != 0 else None,
                airmass=values[3],
                rx=values[4],
                ry=values[5]
            )
        except struct.error as e:
            raise SirilError(f"Deserialization error: {e}") from e

@dataclass
class DistoData:
    """Python equivalent of Siril disto_params structure"""
    index: DistoType = DistoType.DISTO_UNDEF #: Specifies the distrosion type
    filename: str = ""                     #: filename if DISTO_FILE or DISTO_MASTER (and optional for DISTO_FILE_COMET)
    velocity: Tuple[float, float] = (0, 0) #: shift velocity if DISTO_FILE_COMET

    def __str__(self):
        """For pretty-printing distortion information"""
        pretty = f'{DistoType(self.index)}'
        if len(self.filename) > 0:
            pretty += f'\nDistorsion file: {self.filename}'
        if self.index == DistoType.DISTO_FILE_COMET:
            pretty += f'\nVelocity X/Y: {self.velocity[0]:.2f} {self.velocity[1]:.2f}'
        return pretty

@dataclass
class Sequence:
    """Python equivalent of Siril sequ structure"""
    seqname: str = ""                    #: name of the sequence
    number: int = 0                      #: number of images in the sequence
    selnum: int = 0                      #: number of selected images
    fixed: int = 0                       #: fixed length of image index in filename
    nb_layers: int = -1                  #: number of layers embedded in each image file
    rx: int = 0                          #: first image width
    ry: int = 0                          #: first image height
    is_variable: bool = False            #: sequence has images of different sizes
    bitpix: int = 0                      #: image pixel format, from fits
    reference_image: int = 0             #: reference image for registration
    imgparam: List[ImgData] = None       #: a structure for each image of the sequence [number]
    regparam: List[List[RegData]] = None #: registration parameters for each layer [nb_layers][number]
    stats: List[List[ImageStats]] = None #: statistics of the images for each layer [nb_layers][number]
    distoparam: List[DistoData] = None   #: distortion data for the sequence [nb_layers]
    beg: int = 0                         #: imgparam[0]->filenum
    end: int = 0                         #: imgparam[number-1]->filenum
    exposure: float = 0.0                #: exposure of frames
    fz: bool = False                     #: whether the file is compressed
    type: SequenceType = None            #: the type of sequence
    cfa_opened_monochrome: bool = False  #: CFA SER opened in monochrome mode
    current: int = 0                     #: file number currently loaded

    def __post_init__(self):
        """Initialize lists that were set to None by default"""
        if self.imgparam is None:
            self.imgparam = []
        if self.regparam is None:
            self.regparam = []
        if self.stats is None:
            self.stats = []
        if self.distoparam is None:
            self.distoparam = []

    def __str__(self):
        """For pretty-printing sequence information"""
        pretty = f'Sequence: {self.seqname}'
        pretty += f'\nImages [selected/total]: {self.selnum} / {self.number}'
        pretty += f'\nNumber of layers: {self.nb_layers}'
        pretty += f'\nBitdepth: {self.bitpix}'
        pretty += f'\nReference image: {self.reference_image + 1}'
        if not self.is_variable:
            pretty += f'\nImage size: {self.rx}x{self.ry}'
        else:
            pretty += '\nImages have variable sizes'
        for i, r in enumerate(self.regparam):
            if any(rr is not None for rr in r):
                pretty += '\nSequence has registration data'
                pretty += f' from layer {i}' if self.nb_layers > 1 else ''
                if self.distoparam is not None and self.distoparam[i] is not None and self.distoparam[i].index != DistoType.DISTO_UNDEF:
                    pretty += f'\nDistortion found in this layer: {self.distoparam[i]}'
        return pretty

@dataclass
class FPoint:
    """
    Represents a 2D point with float x and y coordinate values in the Siril
    image.
    """
    x: float #: x co-ordinate
    y: float #: y co-ordinate

# This is a very liberal limit, only there to protect C against unbounded g_malloc0
# calls that could arise from attempts to create a Polygon with astronomical numbers
# of FPoints.
MAX_POINTS_PER_POLYGON = 1000000

@dataclass
class Polygon:
    """
    Represents a user-defined polygon. These can be filled or outline-only, and
    can have any color and transparency (alpha) value. They can also have an optional
    label which is displayed centred on the polygon.

    Note that Polygons should be considered transitory if used with the overlay -
    they can be used to display information to the user but they may be cleared
    at any time if the user toggles the overlay button in the main Siril interface
    to clear the overlay.
    """
    
    points: List[FPoint] #: List of points defining the polygon's shape
    polygon_id: int = 0 #: unique identifier
    color: int = 0xFFFFFFFF #: 32-bit RGBA color (packed, uint_8 per component. Default value is 0xFFFFFFFF)
    fill: bool = False #: whether or not the polygon should be filled when drawn
    legend: str = None #: an optional legend

    @classmethod
    def from_rectangle(cls, rect: Tuple[int, int, int, int], **kwargs) -> 'Polygon':
        """
        Create a Polygon from a rectangle of the kind returned by
        sirilpy.connection.get_siril_selection().

        Args:
            rect (Tuple[int, int, int, int]): Rectangle as (x, y, width, height)
            **kwargs: Additional keyword arguments to pass to Polygon constructor
                    (polygon_id, color, fill, legend)

        Returns:
            Polygon: A new Polygon instance representing the rectangle
        """
        x, y, width, height = rect

        # Create the four corner points of the rectangle
        points = [
            FPoint(float(x), float(y)),                    # top-left
            FPoint(float(x + width), float(y)),            # top-right
            FPoint(float(x + width), float(y + height)),   # bottom-right
            FPoint(float(x), float(y + height))            # bottom-left
        ]

        return cls(points=points, **kwargs)

    def __str__(self):
        """For pretty-printing polygon information"""
        pretty = f'User-defined overlay polygon: {self.legend}'
        pretty += f'\nID: {self.polygon_id}'
        pretty += f'\nColor (RGBA): 0x{self.color:08X}'
        pretty += f'\nFill: {self.fill}'
        for i, point in enumerate(self.points):
            pretty += f'\nPoint {i}: {point.x}, {point.y}'
        return pretty

    def get_bounds(self) -> Tuple[float, float, float, float]:
        """
        Get the bounding box of the polygon.

        Returns:
            Tuple[float, float, float, float]: (min_x, min_y, max_x, max_y)

        Raises:
            ValueError: If the polygon has no points.
        """
        if not self.points:
            raise ValueError("Polygon has no points")

        min_x = min(point.x for point in self.points)
        max_x = max(point.x for point in self.points)
        min_y = min(point.y for point in self.points)
        max_y = max(point.y for point in self.points)

        return min_x, min_y, max_x, max_y

    def get_min_x(self) -> float:
        """Get the minimum x coordinate of the polygon."""
        if not self.points:
            raise ValueError("Polygon has no points")
        return min(point.x for point in self.points)

    def get_max_x(self) -> float:
        """Get the maximum x coordinate of the polygon."""
        if not self.points:
            raise ValueError("Polygon has no points")
        return max(point.x for point in self.points)

    def get_min_y(self) -> float:
        """Get the minimum y coordinate of the polygon."""
        if not self.points:
            raise ValueError("Polygon has no points")
        return min(point.y for point in self.points)

    def get_max_y(self) -> float:
        """Get the maximum y coordinate of the polygon."""
        if not self.points:
            raise ValueError("Polygon has no points")
        return max(point.y for point in self.points)

    def contains_point(self, x: float, y: float) -> bool:
        """
        Determine if a point is inside the polygon using Dan Sunday's optimized winding number algorithm.

        This algorithm is more robust than ray casting for complex polygons and handles
        edge cases better, including points on edges and self-intersecting polygons.

        Args:
            x (float): X coordinate of the point to test.
            y (float): Y coordinate of the point to test.

        Returns:
            bool: True if the point is inside the polygon, False otherwise.
        """
        if len(self.points) < 3:
            return False

        def _is_left(p0_x: float, p0_y: float, p1_x: float, p1_y: float, p2_x: float, p2_y: float) -> float:
            """
            Test if point P2 is left|on|right of an infinite line P0P1.

            Returns:
                >0 for P2 left of the line through P0 and P1
                =0 for P2 on the line
                <0 for P2 right of the line
            """
            return ((p1_x - p0_x) * (p2_y - p0_y) - (p2_x - p0_x) * (p1_y - p0_y))

        winding_number = 0    # the winding number counter
        n = len(self.points)

        # Loop through all edges of the polygon
        for i in range(n):
            # Edge from vertex i to vertex i+1
            if i == n - 1:
                # Last edge connects to first vertex
                v1_x, v1_y = self.points[i].x, self.points[i].y
                v2_x, v2_y = self.points[0].x, self.points[0].y
            else:
                v1_x, v1_y = self.points[i].x, self.points[i].y
                v2_x, v2_y = self.points[i + 1].x, self.points[i + 1].y

            if v1_y <= y:          # start y <= P.y
                if v2_y > y:      # an upward crossing
                    if _is_left(v1_x, v1_y, v2_x, v2_y, x, y) > 0:  # P left of edge
                        winding_number += 1            # have a valid up intersect
            else:                        # start y > P.y (no test needed)
                if v2_y <= y:     # a downward crossing
                    if _is_left(v1_x, v1_y, v2_x, v2_y, x, y) < 0:  # P right of edge
                        winding_number -= 1            # have a valid down intersect

        return winding_number != 0

    def serialize(self) -> bytes:
        """
        Serializes a single Polygon object into a byte array.

        Returns:
            bytes: A byte array representing the serialized polygon data.

        Raises:
            ValueError: If the number of points exceeds the allowed limit.
        """
        if len(self.points) > MAX_POINTS_PER_POLYGON:
            raise ValueError(f"Too many points in polygon {self.polygon_id}: max allowed is {MAX_POINTS_PER_POLYGON}")

        # Pack ID, number of points, color, and fill flag
        # Use 'I' for unsigned int and '?' for boolean
        buffer = bytearray()
        buffer.extend(struct.pack('!iiI?', self.polygon_id, len(self.points), self.color, self.fill))

        # Pack each point as float
        for point in self.points:
            buffer.extend(struct.pack('!dd', point.x, point.y))

        # Pack the legend (if it exists)
        if self.legend is not None:
            legend_bytes = self.legend.encode('utf-8')
            # Pack the length of the string first, then the string itself
            buffer.extend(struct.pack('!i', len(legend_bytes)))
            buffer.extend(legend_bytes)
        else:
            # If legend is None, pack a length of 0
            buffer.extend(struct.pack('!i', 0))

        return bytes(buffer)

    @classmethod
    def deserialize_polygon(cls, data: bytes) -> Tuple['Polygon', bytes]:
        """
        Creates a Polygon object by deserializing a byte array.

        Returns:
            Tuple: A Polygon object and any remaining bytes in the byte
                   array. (The remaining bytes are for use in
                   deserialize_polygon_list and can be safely ignored if
                   deserializing a single polygon.)

        Raises:
            ValueError: If there is insufficient data to deserialize.
        """
        if len(data) < 13:
            raise ValueError("Invalid data size for polygon")

        polygon_id, n_points, color, fill = struct.unpack('!iiI?', data[:13])
        data = data[13:]

        if n_points < 0 or n_points > MAX_POINTS_PER_POLYGON:
            raise ValueError(f"Invalid number of points: {n_points}")

        points = []
        for _ in range(n_points):
            if len(data) < 16:
                raise ValueError("Not enough data for points")

            x, y = struct.unpack('!dd', data[:16])
            data = data[16:]
            points.append(FPoint(x, y))

        # Read legend length
        if len(data) < 4:
            raise ValueError("Not enough data for legend length")

        legend_length = struct.unpack('!i', data[:4])[0]
        data = data[4:]

        if legend_length > 0:
            if len(data) < legend_length:
                raise ValueError("Not enough data for legend string")

            legend = data[:legend_length].decode('utf-8').rstrip('\x00')
            data = data[legend_length:]
        else:
            legend = None

        polygon = cls(points, polygon_id, color, fill, legend)
        return polygon, data

    @classmethod
    def deserialize_polygon_list(cls, data: bytes) -> List['Polygon']:
        """
        Creates a List of Polygon objects by deserializing a byte array.

        Returns:
            List: A List of Polygon objects.

        Raises:
            ValueError: If there is invalid data to deserialize.
        """
        if len(data) < 4:
            raise ValueError("Invalid data size for polygon list")

        num_polygons = struct.unpack('!I', data[:4])[0]
        data = data[4:]

        polygons = []
        for _ in range(num_polygons):
            # Create each polygon from the remaining data
            polygon, data = cls.deserialize_polygon(data)
            polygons.append(polygon)

        return polygons

@dataclass
class ImageAnalysis:
    """
    Structure to hold image analysis data, used for culling
    """
    # constants used for packing/unpacking
    FLEN: ClassVar[int] = 71

    bgnoise: float = 0.0    #: RMS background noise
    fwhm: float = 0.0       #: Mean fwhm
    wfwhm: float = 0.0      #: Mean weighted fwhm
    nbstars: int = 0        #: Number of stars detected
    roundness: float = 0.0  #: Mean star roundness
    imagetype: "ImageType" = 0  #: Image type enum
    timestamp: int = 0      #: UNIX timestamp (64-bit seconds since 1970/1/1 00:00 UTC)
    channels: int = 0       #: number of channels in the image
    height: int = 0         #: image height
    width: int = 0          #: image width
    filter: str = ""        #: filter name (fixed-length string from C, max 70 chars)

    # Network-safe format:
    # ! = network (big-endian), standard sizes, no padding
    # d = 8-byte double, q = 8-byte int, 70s = 70-byte string
    _struct_fmt = f"!dddqdqqqqq{FLEN}s"
    _struct = struct.Struct(_struct_fmt)

    def serialize(self) -> bytes:
        """Pack the dataclass into a network-safe binary struct."""
        # Ensure filter fits FLEN, pad with null bytes if shorter
        filter_bytes = self.filter.encode("utf-8")[:FLEN]
        filter_bytes = filter_bytes.ljust(FLEN, b"\x00")

        return self._struct.pack(
            self.bgnoise,
            self.fwhm,
            self.wfwhm,
            self.nbstars,
            self.roundness,
            self.imagetype,
            self.timestamp,
            self.channels,
            self.height,
            self.width,
            filter_bytes,
        )

    @classmethod
    def deserialize(cls, data: bytes) -> "ImageAnalysis":
        """Unpack a network-safe binary struct into an ImageAnalysis instance."""
        (
            bgnoise,
            fwhm,
            wfwhm,
            nbstars,
            roundness,
            imagetype,
            timestamp,
            channels,
            height,
            width,
            filter_bytes,
        ) = cls._struct.unpack(data)

        # Decode filter string, stripping null terminators
        filter_str = filter_bytes.split(b"\x00", 1)[0].decode("utf-8", errors="ignore")

        return cls(
            bgnoise,
            fwhm,
            wfwhm,
            nbstars,
            roundness,
            imagetype,
            timestamp,
            channels,
            height,
            width,
            filter_str,
        )