1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
#include <cstdlib>
#include <iostream>
#include "HTMesh.h"
#include "MeshBuffer.h"
#include "MeshIterator.h"
#include "SpatialVector.h"
#include "SpatialIndex.h"
#include "RangeConvex.h"
#include "HtmRange.h"
#include "HtmRangeIterator.h"
/******************************************************************************
* Note: There is "complete" checking for duplicate points in the line and
* polygon intersection routines below. This may have a slight performance
* impact on indexing lines and polygons.
*
* -- James B. Bowlin
*****************************************************************************/
HTMesh::HTMesh(int level, int buildLevel, int numBuffers)
: m_level(level), m_buildLevel(buildLevel), m_numBuffers(numBuffers), htmDebug(0)
{
name = "HTMesh";
if (m_buildLevel > 0)
{
if (m_buildLevel > m_level)
m_buildLevel = m_level;
htm = new SpatialIndex(m_level, m_buildLevel);
}
else
{
htm = new SpatialIndex(m_level);
}
edge = 2. / 3.14; // inverse of roughly 1/4 circle
numTrixels = 8;
for (int i = m_level; i--;)
{
numTrixels *= 4;
edge *= 2.0;
}
edge = 1.0 / edge; // roughly length of one edge (radians)
edge10 = edge / 10.0;
eps = 1.0e-6; // arbitrary small number
magicNum = numTrixels;
degree2Rad = 3.1415926535897932385E0 / 180.0;
// Allocate MeshBuffers
m_meshBuffer = (MeshBuffer **)malloc(sizeof(MeshBuffer *) * numBuffers);
if (m_meshBuffer == nullptr)
{
fprintf(stderr, "Out of memory allocating %d MeshBuffers.\n", numBuffers);
exit(0);
}
for (int i = 0; i < numBuffers; i++)
{
m_meshBuffer[i] = new MeshBuffer(this);
}
}
HTMesh::~HTMesh()
{
delete htm;
for (BufNum i = 0; i < m_numBuffers; i++)
delete m_meshBuffer[i];
free(m_meshBuffer);
}
Trixel HTMesh::index(double ra, double dec) const
{
return (Trixel)htm->idByPoint(SpatialVector(ra, dec)) - magicNum;
}
bool HTMesh::performIntersection(RangeConvex *convex, BufNum bufNum)
{
if (!validBufNum(bufNum))
return false;
convex->setOlevel(m_level);
HtmRange range;
convex->intersect(htm, &range);
HtmRangeIterator iterator(&range);
MeshBuffer *buffer = m_meshBuffer[bufNum];
buffer->reset();
while (iterator.hasNext())
{
buffer->append((Trixel)iterator.next() - magicNum);
}
if (buffer->error())
{
fprintf(stderr, "%s: trixel overflow.\n", name);
return false;
};
return true;
}
// CIRCLE
void HTMesh::intersect(double ra, double dec, double radius, BufNum bufNum)
{
double d = cos(radius * degree2Rad);
SpatialConstraint c(SpatialVector(ra, dec), d);
RangeConvex convex;
convex.add(c); // [ed:RangeConvex::add]
if (!performIntersection(&convex, bufNum))
printf("In intersect(%f, %f, %f)\n", ra, dec, radius);
}
// TRIANGLE
void HTMesh::intersect(double ra1, double dec1, double ra2, double dec2, double ra3, double dec3, BufNum bufNum)
{
if (fabs(ra1 - ra3) + fabs(dec1 - dec3) < eps)
return intersect(ra1, dec1, ra2, dec2);
else if (fabs(ra1 - ra2) + fabs(dec1 - dec2) < eps)
return intersect(ra1, dec1, ra3, dec3);
else if (fabs(ra2 - ra3) + fabs(dec2 - dec3) < eps)
return intersect(ra1, dec1, ra2, dec2);
SpatialVector p1(ra1, dec1);
SpatialVector p2(ra2, dec2);
SpatialVector p3(ra3, dec3);
RangeConvex convex(&p1, &p2, &p3);
if (!performIntersection(&convex, bufNum))
printf("In intersect(%f, %f, %f, %f, %f, %f)\n", ra1, dec1, ra2, dec2, ra3, dec3);
}
// QUADRILATERAL
void HTMesh::intersect(double ra1, double dec1, double ra2, double dec2, double ra3, double dec3, double ra4,
double dec4, BufNum bufNum)
{
if (fabs(ra1 - ra4) + fabs(dec1 - dec4) < eps)
return intersect(ra2, dec2, ra3, dec3, ra4, dec4);
else if (fabs(ra1 - ra2) + fabs(dec1 - dec2) < eps)
return intersect(ra2, dec2, ra3, dec3, ra4, dec4);
else if (fabs(ra2 - ra3) + fabs(dec2 - dec3) < eps)
return intersect(ra1, dec1, ra2, dec2, ra4, dec4);
else if (fabs(ra3 - ra4) + fabs(dec3 - dec4) < eps)
return intersect(ra1, dec1, ra2, dec2, ra4, dec4);
SpatialVector p1(ra1, dec1);
SpatialVector p2(ra2, dec2);
SpatialVector p3(ra3, dec3);
SpatialVector p4(ra4, dec4);
RangeConvex convex(&p1, &p2, &p3, &p4);
if (!performIntersection(&convex, bufNum))
printf("In intersect(%f, %f, %f, %f, %f, %f, %f, %f)\n", ra1, dec1, ra2, dec2, ra3, dec3, ra4, dec4);
}
void HTMesh::toXYZ(double ra, double dec, double *x, double *y, double *z)
{
ra *= degree2Rad;
dec *= degree2Rad;
double sinRa = sin(ra);
double cosRa = cos(ra);
double sinDec = sin(dec);
double cosDec = cos(dec);
*x = cosDec * cosRa;
*y = cosDec * sinRa;
*z = sinDec;
}
// Intersect a line segment by forming a very thin triangle to use for the
// intersection. Use cross product to ensure we have a perpendicular vector.
// LINE
void HTMesh::intersect(double ra1, double dec1, double ra2, double dec2, BufNum bufNum)
{
double x1, y1, z1, x2, y2, z2;
//if (ra1 == 0.0 || ra1 == 180.00) ra1 += 0.1;
//if (ra2 == 0.0 || ra2 == 180.00) ra2 -= 0.1;
//if (dec1 == 0.0 ) dec1 += 0.1;
//if (dec2 == 0.0 ) dec2 -= 0.1;
// convert to Cartesian. Ugh.
toXYZ(ra1, dec1, &x1, &y1, &z1);
toXYZ(ra2, dec2, &x2, &y2, &z2);
// Check if points are too close
double len;
len = fabs(x1 - x2);
len += fabs(y1 - y2);
len += fabs(z1 - z2);
if (htmDebug > 0)
{
printf("htmDebug = %d\n", htmDebug);
printf("p1 = (%f, %f, %f)\n", x1, y1, z1);
printf("p2 = (%f, %f, %f)\n", x2, y2, z2);
printf("edge: %f (radians) %f (degrees)\n", edge, edge / degree2Rad);
printf("len : %f (radians) %f (degrees)\n", len, len / degree2Rad);
}
if (len < edge10)
return intersect(ra1, len, bufNum);
// Cartesian cross product => perpendicular!. Ugh.
double cx = y1 * z2 - z1 * y2;
double cy = z1 * x2 - x1 * z2;
double cz = x1 * y2 - y1 * x2;
if (htmDebug > 0)
printf("cp = (%f, %f, %f)\n", cx, cy, cz);
double norm = edge10 / (fabs(cx) + fabs(cy) + fabs(cz));
// give it length edge/10
cx *= norm;
cy *= norm;
cz *= norm;
if (htmDebug > 0)
printf("cpn = (%f, %f, %f)\n", cx, cy, cz);
// add it to (ra1, dec1)
cx += x1;
cy += y1;
cz += z1;
if (htmDebug > 0)
printf("cpf = (%f, %f, %f)\n", cx, cy, cz);
// back to spherical
norm = sqrt(cx * cx + cy * cy + cz * cz);
double ra0 = atan2(cy, cx) / degree2Rad;
double dec0 = asin(cz / norm) / degree2Rad;
if (htmDebug > 0)
printf("new ra, dec = (%f, %f)\n", ra0, dec0);
SpatialVector p1(ra1, dec1);
SpatialVector p0(ra0, dec0);
SpatialVector p2(ra2, dec2);
RangeConvex convex(&p1, &p0, &p2);
if (!performIntersection(&convex, bufNum))
printf("In intersect(%f, %f, %f, %f)\n", ra1, dec1, ra2, dec2);
}
MeshBuffer *HTMesh::meshBuffer(BufNum bufNum)
{
if (!validBufNum(bufNum))
return nullptr;
return m_meshBuffer[bufNum];
}
int HTMesh::intersectSize(BufNum bufNum)
{
if (!validBufNum(bufNum))
return 0;
return m_meshBuffer[bufNum]->size();
}
void HTMesh::vertices(Trixel id, double *ra1, double *dec1, double *ra2, double *dec2, double *ra3, double *dec3)
{
SpatialVector v1, v2, v3;
htm->nodeVertex(id + magicNum, v1, v2, v3);
*ra1 = v1.ra();
*dec1 = v1.dec();
*ra2 = v2.ra();
*dec2 = v2.dec();
*ra3 = v3.ra();
*dec3 = v3.dec();
}
|