File: HTMesh.cpp

package info (click to toggle)
siril 1.4.0~rc2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,352 kB
  • sloc: ansic: 174,082; cpp: 28,254; python: 7,891; makefile: 974; xml: 777; sh: 271
file content (279 lines) | stat: -rw-r--r-- 7,777 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#include <cstdlib>
#include <iostream>

#include "HTMesh.h"
#include "MeshBuffer.h"
#include "MeshIterator.h"

#include "SpatialVector.h"
#include "SpatialIndex.h"
#include "RangeConvex.h"
#include "HtmRange.h"
#include "HtmRangeIterator.h"

/******************************************************************************
 * Note: There is "complete" checking for duplicate points in the line and
 * polygon intersection routines below.  This may have a slight performance
 * impact on indexing lines and polygons.
 *
 * -- James B. Bowlin
 *****************************************************************************/

HTMesh::HTMesh(int level, int buildLevel, int numBuffers)
    : m_level(level), m_buildLevel(buildLevel), m_numBuffers(numBuffers), htmDebug(0)
{
    name = "HTMesh";
    if (m_buildLevel > 0)
    {
        if (m_buildLevel > m_level)
            m_buildLevel = m_level;
        htm = new SpatialIndex(m_level, m_buildLevel);
    }
    else
    {
        htm = new SpatialIndex(m_level);
    }

    edge       = 2. / 3.14; //  inverse of roughly 1/4 circle
    numTrixels = 8;
    for (int i = m_level; i--;)
    {
        numTrixels *= 4;
        edge *= 2.0;
    }
    edge   = 1.0 / edge; // roughly length of one edge (radians)
    edge10 = edge / 10.0;
    eps    = 1.0e-6; // arbitrary small number

    magicNum   = numTrixels;
    degree2Rad = 3.1415926535897932385E0 / 180.0;

    // Allocate MeshBuffers
    m_meshBuffer = (MeshBuffer **)malloc(sizeof(MeshBuffer *) * numBuffers);
    if (m_meshBuffer == nullptr)
    {
        fprintf(stderr, "Out of memory allocating %d MeshBuffers.\n", numBuffers);
        exit(0);
    }
    for (int i = 0; i < numBuffers; i++)
    {
        m_meshBuffer[i] = new MeshBuffer(this);
    }
}

HTMesh::~HTMesh()
{
    delete htm;
    for (BufNum i = 0; i < m_numBuffers; i++)
        delete m_meshBuffer[i];
    free(m_meshBuffer);
}

Trixel HTMesh::index(double ra, double dec) const
{
    return (Trixel)htm->idByPoint(SpatialVector(ra, dec)) - magicNum;
}

bool HTMesh::performIntersection(RangeConvex *convex, BufNum bufNum)
{
    if (!validBufNum(bufNum))
        return false;

    convex->setOlevel(m_level);
    HtmRange range;
    convex->intersect(htm, &range);
    HtmRangeIterator iterator(&range);

    MeshBuffer *buffer = m_meshBuffer[bufNum];
    buffer->reset();
    while (iterator.hasNext())
    {
        buffer->append((Trixel)iterator.next() - magicNum);
    }

    if (buffer->error())
    {
        fprintf(stderr, "%s: trixel overflow.\n", name);
        return false;
    };

    return true;
}

// CIRCLE
void HTMesh::intersect(double ra, double dec, double radius, BufNum bufNum)
{
    double d = cos(radius * degree2Rad);
    SpatialConstraint c(SpatialVector(ra, dec), d);
    RangeConvex convex;
    convex.add(c); // [ed:RangeConvex::add]

    if (!performIntersection(&convex, bufNum))
        printf("In intersect(%f, %f, %f)\n", ra, dec, radius);
}

// TRIANGLE
void HTMesh::intersect(double ra1, double dec1, double ra2, double dec2, double ra3, double dec3, BufNum bufNum)
{
    if (fabs(ra1 - ra3) + fabs(dec1 - dec3) < eps)
        return intersect(ra1, dec1, ra2, dec2);

    else if (fabs(ra1 - ra2) + fabs(dec1 - dec2) < eps)
        return intersect(ra1, dec1, ra3, dec3);

    else if (fabs(ra2 - ra3) + fabs(dec2 - dec3) < eps)
        return intersect(ra1, dec1, ra2, dec2);

    SpatialVector p1(ra1, dec1);
    SpatialVector p2(ra2, dec2);
    SpatialVector p3(ra3, dec3);
    RangeConvex convex(&p1, &p2, &p3);

    if (!performIntersection(&convex, bufNum))
        printf("In intersect(%f, %f, %f, %f, %f, %f)\n", ra1, dec1, ra2, dec2, ra3, dec3);
}

// QUADRILATERAL
void HTMesh::intersect(double ra1, double dec1, double ra2, double dec2, double ra3, double dec3, double ra4,
                       double dec4, BufNum bufNum)
{
    if (fabs(ra1 - ra4) + fabs(dec1 - dec4) < eps)
        return intersect(ra2, dec2, ra3, dec3, ra4, dec4);

    else if (fabs(ra1 - ra2) + fabs(dec1 - dec2) < eps)
        return intersect(ra2, dec2, ra3, dec3, ra4, dec4);

    else if (fabs(ra2 - ra3) + fabs(dec2 - dec3) < eps)
        return intersect(ra1, dec1, ra2, dec2, ra4, dec4);

    else if (fabs(ra3 - ra4) + fabs(dec3 - dec4) < eps)
        return intersect(ra1, dec1, ra2, dec2, ra4, dec4);

    SpatialVector p1(ra1, dec1);
    SpatialVector p2(ra2, dec2);
    SpatialVector p3(ra3, dec3);
    SpatialVector p4(ra4, dec4);
    RangeConvex convex(&p1, &p2, &p3, &p4);

    if (!performIntersection(&convex, bufNum))
        printf("In intersect(%f, %f, %f, %f, %f, %f, %f, %f)\n", ra1, dec1, ra2, dec2, ra3, dec3, ra4, dec4);
}

void HTMesh::toXYZ(double ra, double dec, double *x, double *y, double *z)
{
    ra *= degree2Rad;
    dec *= degree2Rad;

    double sinRa  = sin(ra);
    double cosRa  = cos(ra);
    double sinDec = sin(dec);
    double cosDec = cos(dec);

    *x = cosDec * cosRa;
    *y = cosDec * sinRa;
    *z = sinDec;
}

// Intersect a line segment by forming a very thin triangle to use for the
// intersection.  Use cross product to ensure we have a perpendicular vector.

// LINE
void HTMesh::intersect(double ra1, double dec1, double ra2, double dec2, BufNum bufNum)
{
    double x1, y1, z1, x2, y2, z2;

    //if (ra1 == 0.0 || ra1 == 180.00) ra1 += 0.1;
    //if (ra2 == 0.0 || ra2 == 180.00) ra2 -= 0.1;
    //if (dec1 == 0.0 ) dec1 += 0.1;
    //if (dec2 == 0.0 ) dec2 -= 0.1;

    // convert to Cartesian. Ugh.
    toXYZ(ra1, dec1, &x1, &y1, &z1);
    toXYZ(ra2, dec2, &x2, &y2, &z2);

    // Check if points are too close
    double len;
    len = fabs(x1 - x2);
    len += fabs(y1 - y2);
    len += fabs(z1 - z2);

    if (htmDebug > 0)
    {
        printf("htmDebug = %d\n", htmDebug);
        printf("p1 = (%f, %f, %f)\n", x1, y1, z1);
        printf("p2 = (%f, %f, %f)\n", x2, y2, z2);
        printf("edge: %f (radians) %f (degrees)\n", edge, edge / degree2Rad);
        printf("len : %f (radians) %f (degrees)\n", len, len / degree2Rad);
    }

    if (len < edge10)
        return intersect(ra1, len, bufNum);

    // Cartesian cross product => perpendicular!.  Ugh.
    double cx = y1 * z2 - z1 * y2;
    double cy = z1 * x2 - x1 * z2;
    double cz = x1 * y2 - y1 * x2;

    if (htmDebug > 0)
        printf("cp  = (%f, %f, %f)\n", cx, cy, cz);

    double norm = edge10 / (fabs(cx) + fabs(cy) + fabs(cz));

    // give it length edge/10
    cx *= norm;
    cy *= norm;
    cz *= norm;

    if (htmDebug > 0)
        printf("cpn  = (%f, %f, %f)\n", cx, cy, cz);

    // add it to (ra1, dec1)
    cx += x1;
    cy += y1;
    cz += z1;

    if (htmDebug > 0)
        printf("cpf  = (%f, %f, %f)\n", cx, cy, cz);

    // back to spherical
    norm        = sqrt(cx * cx + cy * cy + cz * cz);
    double ra0  = atan2(cy, cx) / degree2Rad;
    double dec0 = asin(cz / norm) / degree2Rad;

    if (htmDebug > 0)
        printf("new ra, dec = (%f, %f)\n", ra0, dec0);

    SpatialVector p1(ra1, dec1);
    SpatialVector p0(ra0, dec0);
    SpatialVector p2(ra2, dec2);
    RangeConvex convex(&p1, &p0, &p2);

    if (!performIntersection(&convex, bufNum))
        printf("In intersect(%f, %f, %f, %f)\n", ra1, dec1, ra2, dec2);
}

MeshBuffer *HTMesh::meshBuffer(BufNum bufNum)
{
    if (!validBufNum(bufNum))
        return nullptr;
    return m_meshBuffer[bufNum];
}

int HTMesh::intersectSize(BufNum bufNum)
{
    if (!validBufNum(bufNum))
        return 0;
    return m_meshBuffer[bufNum]->size();
}

void HTMesh::vertices(Trixel id, double *ra1, double *dec1, double *ra2, double *dec2, double *ra3, double *dec3)
{
    SpatialVector v1, v2, v3;
    htm->nodeVertex(id + magicNum, v1, v2, v3);
    *ra1  = v1.ra();
    *dec1 = v1.dec();
    *ra2  = v2.ra();
    *dec2 = v2.dec();
    *ra3  = v3.ra();
    *dec3 = v3.dec();
}